基于改进神经网络的声发射信号识别算法研究
[Abstract]:Acoustic emission (AE) is a kind of nondestructive testing technology which records the internal vibration of material by transient elastic wave. It has the characteristics of real time, applicability and universality, and is suitable for material deformation and pipeline leakage detection. Vessel pressure inspection and other aspects of research. Pattern recognition of acoustic emission signals is an important part of detection. Only by timely and accurate identification of fault modes can we effectively detect faults and avoid material losses and hidden dangers caused by monitoring errors. At present, the acoustic emission recognition technology based on neural network has some disadvantages, such as less feature information content, and the network is prone to fall into local optimum. Based on the existing technology, this paper has carried out research work in the following aspects: first, the acoustic emission detection technology is studied in detail, and the processing method of acoustic emission (Acoustic Emission, AE) signal is discussed. The differences of AE signal waveforms with different rubbing degrees are compared by experiments. Secondly, the feature extraction of acoustic emission signals is studied. It is proposed that Hurst exponent and approximate entropy be added to the AE feature representation, and analyzed from the angle of statistical correlation and uncertainty. The experimental results show that the new AE feature is effective. Thirdly, the structure of neural network algorithm is studied. The advantages of Gao Si hybrid model (Gaussian Mixture Model, GMM) and backpropagation (BP, Back Propagating) are combined to train the model parameters alternately, and the hybrid model GMM/ANN (Artificial Neural Network, is proposed. ANN) is applied to AE recognition to optimize network performance. Fourthly, a forward chaotic neural network algorithm for acoustic emission recognition is proposed. Aiming at the uncertainty and nonlinearity of AE system, the chaotic characteristics of the network are enhanced by Logistic mapping unit, and the recognition performance of the system is improved. Fifthly, an algorithm for acoustic emission recognition using belief network is proposed. Based on the (Restricted Boltzmann Machines, RBM) model of constrained Boltzmann machine, the (Deep Belief Network, DBN), design of belief network is constructed and the parameters of the model are improved to reduce the local optimal effect. The advantages of DBN in AE recognition are proved by comparison with BP.
【学位授予单位】:东南大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TP183;TB302.5
【参考文献】
相关期刊论文 前10条
1 吕刚;郝平;盛建荣;;一种改进的深度神经网络在小图像分类中的应用研究[J];计算机应用与软件;2014年04期
2 戴礼荣;张仕良;;深度语音信号与信息处理:研究进展与展望[J];数据采集与处理;2014年02期
3 陈丽萍;王尔玉;戴礼荣;宋彦;;基于深层置信网络的说话人信息提取方法[J];模式识别与人工智能;2013年12期
4 陈琦;张文林;牛铜;李弼程;;一种基于RBM的深层神经网络音素识别方法[J];信息工程大学学报;2013年05期
5 李舜酩;郭海东;李殿荣;;振动信号处理方法综述[J];仪器仪表学报;2013年08期
6 焦阳;侯洁;李光海;吴占稳;陈晨;米尚言;;声发射信号处理技术及其在滚动轴承检测中的应用现状[J];河北科技大学学报;2013年04期
7 范会敏;王浩;;模式识别方法概述[J];电子设计工程;2012年19期
8 孙志军;薛磊;许阳明;王正;;深度学习研究综述[J];计算机应用研究;2012年08期
9 成新民;胡峰;邓艾东;赵力;;基于代数网络和混沌参数的碰摩声发射源定位方法研究[J];振动工程学报;2011年03期
10 陈存宝;赵力;;嵌入自联想神经网络的高斯混合背景模型说话人确认[J];应用科学学报;2010年01期
相关博士学位论文 前1条
1 刘国华;声发射信号处理关键技术研究[D];浙江大学;2008年
相关硕士学位论文 前9条
1 陈硕;深度学习神经网络在语音识别中的应用研究[D];华南理工大学;2013年
2 许可;卷积神经网络在图像识别上的应用的研究[D];浙江大学;2012年
3 周凌翱;改进BP神经网络在模式识别中的应用及研究[D];南京理工大学;2010年
4 刘乐;改进BP网络及其在预测问题中的应用研究[D];山东师范大学;2009年
5 冯晓光;近似熵在往复式压缩机故障诊断中的研究应用[D];大连理工大学;2006年
6 欧阳广;基于神经网络BP算法的网络入侵检测系统研究与实现[D];东南大学;2006年
7 刘志刚;基于现代谱估计理论的信噪分离方法及其应用研究[D];成都理工大学;2006年
8 印欣运;声发射技术在旋转机械碰摩故障诊断中的应用[D];清华大学;2005年
9 夏宏飞;混合神经网络及其应用研究[D];浙江大学;2003年
,本文编号:2400160
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2400160.html