等离子体辅助原子层沉积在铜互连薄膜沉积工艺中的应用研究
发布时间:2019-01-28 20:54
【摘要】:集成电路的高速发展对铜互连制作工艺提出了更多要求。现如今在复杂三维结构表面沉积高质量的铜籽晶层以及制备高效的扩散阻挡层成为微电子行业亟待解决的问题。原子层沉积技术基于表面自限制饱和化学吸附的反应原理,将会成为未来制备保形超薄薄膜的首选工艺。由于铜原子高温下极易团聚且易与硅基体发生反应,同时互连器件难以承受较高的沉积温度,发展低温原子层沉积技术成为互连行业的必要。等离子体技术能够降低原子层沉积的反应温度,增加基体表面反应活性位点,是解决低温原子层沉积的主要技术手段。本论文使用等离子体辅助原子层沉积技术,以[Cu(iPr-Me-amd)]2和Mn(tBu2DAD)2分别作为铜前驱体和锰前驱体,进行了低温沉积金属铜薄膜及氮化锰薄膜的研究工作,主要取得以下结果:(1)首次使用铜脒基前驱体用于低温等离子体辅助原子层沉积工艺,当沉积温度为50?C,输入功率为80 W,原子层沉积循环为铜前驱体5 s、冲洗10 s、氢等离子体10 s、冲洗10 s时,在深宽比为10:1的硅基体沟槽中可以得到高纯、高保形、连续、平滑的铜薄膜,其沉积速率为0.071 nm/cycle。利用时间分辨发射光谱技术与石英晶体微量天平技术对铜薄膜沉积过程进行了诊断测量,50?C条件下,化学吸附于基体表面的Cu(amd)部分发生分解形成异丙基和N-异丙基乙酰胺。氢等离子体中的原子氢,可将化学吸附于基体表面的Cu(amd)、异丙基和N-异丙基乙酰胺全部氢化,形成可挥发的副产物脱离基体表面,得到金属铜薄膜;(2)首次进行等离子体辅助原子层沉积氮化锰薄膜的研究工作,初步研究发现在沉积温度250?C和300?C,输入功率100 W,原子层沉积循环为锰前驱体5s、冲洗15 s、氨等离子体10 s、冲洗10 s时,沉积得到η-Mn3N2相薄膜。250?C时沉积速率为0.078 nm/cycle。当40 sccm氨气与20 sccm氢气混合,输入功率为100 W时,同样得到η-Mn3N2薄膜,而输入功率为200 W时,沉积得到金属锰相薄膜。
[Abstract]:The rapid development of integrated circuits has put forward more requirements for copper interconnection fabrication process. Nowadays, the deposition of high-quality copper seed layer and the preparation of high efficiency diffusion barrier layer on the surface of complex three-dimensional structure have become an urgent problem to be solved in the microelectronics industry. Based on the reaction principle of surface self-limiting saturated chemisorption, atomic layer deposition technology will be the first choice for the preparation of thin films in the future. Because copper atoms are easy to agglomerate and react with silicon substrate at high temperature, and the interconnect devices can not bear high deposition temperature, it is necessary to develop low temperature atomic layer deposition technology. Plasma technology can reduce the reaction temperature of atomic layer deposition and increase the reactive sites on the substrate surface. It is the main technical means to solve the problem of low temperature atomic layer deposition. In this paper, the deposition of metal copper thin films and manganese nitride films at low temperature using [Cu (iPr-Me-amd)] 2 and Mn (tBu2DAD) 2 as copper precursors and manganese precursors, respectively, were studied by plasma assisted atomic layer deposition. The main results are as follows: (1) Cuamidine precursor was first used in low temperature plasma assisted atomic layer deposition process. When the deposition temperature was 50 鈩,
本文编号:2417306
[Abstract]:The rapid development of integrated circuits has put forward more requirements for copper interconnection fabrication process. Nowadays, the deposition of high-quality copper seed layer and the preparation of high efficiency diffusion barrier layer on the surface of complex three-dimensional structure have become an urgent problem to be solved in the microelectronics industry. Based on the reaction principle of surface self-limiting saturated chemisorption, atomic layer deposition technology will be the first choice for the preparation of thin films in the future. Because copper atoms are easy to agglomerate and react with silicon substrate at high temperature, and the interconnect devices can not bear high deposition temperature, it is necessary to develop low temperature atomic layer deposition technology. Plasma technology can reduce the reaction temperature of atomic layer deposition and increase the reactive sites on the substrate surface. It is the main technical means to solve the problem of low temperature atomic layer deposition. In this paper, the deposition of metal copper thin films and manganese nitride films at low temperature using [Cu (iPr-Me-amd)] 2 and Mn (tBu2DAD) 2 as copper precursors and manganese precursors, respectively, were studied by plasma assisted atomic layer deposition. The main results are as follows: (1) Cuamidine precursor was first used in low temperature plasma assisted atomic layer deposition process. When the deposition temperature was 50 鈩,
本文编号:2417306
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2417306.html