ZnS-超分子有机凝胶复合薄膜的制备及其传感性能
[Abstract]:In the environment detection, the amine compound has a large toxicity, and even has a strong carcinogenic effect, so that the amine compound has great attention in the environment and food safety detection. Therefore, there is an urgent need for a continuous study and development of methods for detecting amine compounds. At present, the conventional methods for determining the amine compounds in the environment include gas chromatography, liquid chromatography, mass spectrometry, electrochemical methods, and the like, wherein the fluorescence method is of great concern due to its high sensitivity, high selectivity, and the application of multi-parameter measurement. In addition, the thin-film sensor can be used repeatedly, is convenient to use, does not pollute the system to be tested, is easy to device and the like, and makes the fluorescent thin-film sensor gradually become a kind of functional film material with great development prospect. different from the fluorescent small molecule, the inorganic semiconductor nano-structure has the characteristics of wide excitation spectrum, narrow emission spectrum, adjustable emission wavelength, stable optical performance and the like, so that the inorganic semiconductor nano-structure has a plurality of unique advantages in the sensing aspect as a sensing element, The super-molecular organic gel, which is formed by weak interaction, provides a new idea for the preparation of a more abundant nano-material, and it is expected that the morphology, the particle size and the size distribution of the inorganic nano-structure can be controlled by changing the structure of the supramolecular aggregate, so as to improve the sensing performance. Based on the above considerations, the inorganic semiconductor nano-material is used as a sensing element, the super-molecular gel is a film-forming substrate, and the stability and the induction of the inorganic deposition reaction are induced by using a small-molecular-weight organic gelling agent, ZnS-supramolecular organic gel hybrid films were prepared by in-situ synthesis and co-mixing respectively. Specifically, the following steps are mainly completed: (1) a super-molecular organic gel film containing Zn (Ac)2 is adopted as a template, and a sufficient amount of H2S gas is slowly introduced into the reaction system under the condition of room temperature to prepare the ZnS-supramolecular composite film. The composite film was characterized by X-ray diffractometer (XRD), scanning electron microscope (SEM), ultraviolet-visible light absorption spectrum (UV-vis), fluorescence spectrum (PL) and fluorescence lifetime. The results show that the aggregate structure of the gelling agent directly determines the morphology of the final hybrid film, and the existence of the network structure can effectively prevent the further aggregation of the nanoparticles, and the size and the content of the ZnS particles in the hybrid thin film can be adjusted by changing the starting concentration of the Zn (Ac)2, The sensing experiments show that the film has sensitive and selective sensing on the organic monoamines and the diamine vapors, and the sensing reversibility is good. (2) taking into account the influence of different preparation methods of the nano material on the nano structure, firstly, the ZnS nano-particles are prepared by adopting an oil-water interface method, and the ZnS nano-particles are introduced into the super-molecular gel system through physical mixing, and the ZnS nano-particles are dried at room temperature, and the compound film is obtained after the gelling solvent is volatilized and dried. The results show that the ZnS nanoparticles are the cubic crystal form, the ZnS nanoparticles in the composite film are uniformly dispersed, and the network structure formed by the gelling agent can stably and stably stabilize the ZnS micro-nano particles, and the ZnS nanoparticles exhibit stable light-emitting performance. The results show that the higher the ZnS content in the film, the stronger the fluorescence intensity, the more sensitive to the volatile organic monoamines and the diamine vapor, and good sensing reversibility. (3) Considering the effective regulation of the light-emitting behavior of the inorganic nano-materials by doping the metal ions, the part of the invention is expected to improve the light-emitting performance by doping Mn2 + in the ZnS nano-particles, so as to improve the sensing performance of the amine-like gas. The preparation method comprises the following steps of: firstly, preparing the ZnS: Mn nano-particles with different Mn2 + doping amount by adopting an oil-water interface method, and then introducing the ZnS: Mn nano-particles into the super-molecular gel thin film by physical mixing, and drying at room temperature. The XRD results show that the crystal form of ZnS: Mn-supermolecular organic gel hybrid thin film has no change before and after ZnS doping. The static fluorescence spectra of ZnS: Mn-supermolecular organic gel hybrid thin film with different Mn2 + doping amount show that the emission spectrum of ZnS is gradually redshifted with the increase of Mn2 + doping. and the fluorescence intensity of the hybrid thin film is firstly enhanced and then weakened, and when the doping amount of the Mn2 + is 1.5 percent, the fluorescence intensity of the hybrid thin film is the most; and the sensing performance experiment shows that the maximum quenching efficiency of the hybrid thin film doped with the Mn2 + is reduced with the increase of the Mn2 + doping amount, The response time is shortened and the sensitivity is improved.
【学位授予单位】:长安大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TB383.2
【相似文献】
相关期刊论文 前10条
1 王丽;石敏;周国庆;左如忠;许育东;苏海林;伍光;于桂洋;于涛;;2-2型磁电复合薄膜材料研究现状[J];金属功能材料;2010年06期
2 ;复合薄膜试制小结[J];塑料;1975年01期
3 胡嘉鹏;耐高压杀菌的复合薄膜袋装食品的生产和标准化[J];食品与发酵工业;1978年05期
4 李淑兰;;对843复合薄膜的剖析[J];防腐与包装;1986年01期
5 曹庸;;多层交叉复合薄膜[J];金山油化纤;1987年03期
6 陶宏;;一种新型多层共挤出复合薄膜[J];金山油化纤;1989年03期
7 石敏;顾仓;许育东;王雷;苏海林;王云龙;齐三;袁琳;;无铅多铁性复合薄膜材料的研究[J];材料导报;2013年23期
8 龚朝阳;罗学涛;张颖;程璇;张莹;;复合薄膜研究的进展[J];真空;2006年05期
9 陈莹莹;张溪文;郭玉;韩高荣;;SiC_xO_y/SnO_2:F/TiO_2复合薄膜的制备及其性能[J];材料科学与工程学报;2008年06期
10 董松涛;喻利花;董师润;许俊华;;磁控共溅射制备锆-硅-氮复合薄膜的显微组织与性能[J];机械工程材料;2008年09期
相关会议论文 前10条
1 高学文;;多层共挤出复合薄膜晶点解析[A];中国包装技术协会研讨推广会暨塑料包装委员会第六届第三次年会论文集[C];2004年
2 密永娟;欧军飞;杨生荣;王金清;;聚多巴胺基复合薄膜的制备及其性能研究[A];甘肃省化学会第二十七届年会暨第九届甘肃省中学化学教学经验交流会论文摘要集[C];2011年
3 李晓光;刘愉快;姚一平;;BiFeO3/La5/8Ca3/8MnO3复合薄膜的巨磁介电效应及高低电阻态转换行为[A];2011中国材料研讨会论文摘要集[C];2011年
4 赵巍;贾震;鄂磊;雅菁;刘志锋;;浸渍提拉法合成钛酸铋/二氧化钛复合薄膜的研究[A];第十七届全国高技术陶瓷学术年会摘要集[C];2012年
5 王昊;陈双俊;张军;许仲梓;;LDPE/POE/SmBO_3复合薄膜材料表面蚀刻研究[A];2009年全国高分子学术论文报告会论文摘要集(下册)[C];2009年
6 朱军;杨明成;陈海军;刘克波;赵惠东;张传国;;γ—射线辐射对尼龙6复合薄膜性能的影响[A];第6届辐射研究与辐射工艺学术年会论文集[C];2004年
7 高雅;南策文;;铁磁性薄膜的制备和磁电复合薄膜电控磁性能探究[A];2011中国材料研讨会论文摘要集[C];2011年
8 赵云峰;高阳;;聚对苯二甲酸乙二醇酯/聚丙烯复合薄膜的超声波焊接[A];2010年全国高分子材料科学与工程研讨会学术论文集(下册)[C];2010年
9 李广;殷景华;刘晓旭;冯宇;田付强;雷清泉;;组分对PI/AlN纳米复合薄膜微结构与介电性能影响研究[A];第十三届全国工程电介质学术会议论文集[C];2011年
10 朱军;杨明成;陈海军;刘克波;赵惠东;;尼龙6复合薄膜的研制及其辐射改性研究[A];科技、工程与经济社会协调发展——中国科协第五届青年学术年会论文集[C];2004年
相关重要报纸文章 前10条
1 陈昌杰;聚乙烯醇在复合薄膜中的应用[N];中国包装报;2005年
2 张文英;我国多层共挤设备亟待发展[N];中国化工报;2003年
3 林其水;常用软包材的特性和应用[N];中国包装报;2007年
4 赵世亮;复合薄膜的曲率与材料的热收缩率差异[N];中国包装报;2011年
5 高学文;多层共挤复合薄膜的应用及发展趋势[N];中国包装报;2002年
6 记者 郭新秋、刘文波;多层共挤复合薄膜在大连诞生[N];中国食品质量报;2002年
7 成远发;复合薄膜的固化管理[N];中国包装报;2007年
8 单仁;复合薄膜基材的品种及性能[N];中国建材报;2006年
9 杨林;新型陶瓷复合薄膜研制出[N];广东建设报;2009年
10 杨;复合软包装基材的特性、应用及其开发[N];中国包装报;2000年
相关博士学位论文 前10条
1 吴战鹏;具有高反射和高导电特性聚酰亚胺银复合薄膜的制备及其形成机理研究[D];北京化工大学;2006年
2 侯亚奇;二氧化钛及其复合薄膜光催化降解性能研究[D];清华大学;2004年
3 谭麟;甚低介电常数聚酰亚胺/多金属氧酸盐复合薄膜的制备及性能[D];华南理工大学;2010年
4 顾勤林;3-氨基丙基—三乙氧基硅烷—稀土复合薄膜的制备及其摩擦学性能研究[D];上海交通大学;2008年
5 区定容;纳米复合薄膜的近场光学性能[D];清华大学;2004年
6 张以忱;中频非平衡磁控溅射制备硬质复合薄膜的研究[D];东北大学;2008年
7 陈波;多铁氧化物复合薄膜的磁电耦合特性及其调控[D];南京大学;2014年
8 唐立文;溶胶凝胶法制备银—钛酸铅复合薄膜及其电学性能的研究[D];浙江大学;2007年
9 牟书香;聚酰亚胺表面功能化复合材料的制备及结构与性能研究[D];北京化工大学;2010年
10 蔡琪;新型Ag-ITO复合薄膜的制备、微结构及光电性质表征[D];安徽大学;2007年
相关硕士学位论文 前10条
1 单文杰;基于界面电荷转移的铋系复合薄膜的制备及其光催化性能研究[D];华南理工大学;2015年
2 程波;PIPS法制备多孔C/TiO_2纳米复合薄膜及其太阳能选择吸收性能研究[D];浙江大学;2015年
3 宋晓栋;NaYF_4:Yb~(3+),Tm~(3+)/Ag复合薄膜的制备及其上转换发光性质研究[D];辽宁大学;2015年
4 时春华;软模板法制备中空二氧化硅及其对水性聚氨酯性能的影响[D];陕西科技大学;2015年
5 赵湖钧;L1_0-FePt/B2-FeRh双层复合薄膜的结构和磁性[D];西南大学;2015年
6 司e,
本文编号:2431696
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2431696.html