掺杂聚吡咯及其复合材料的电化学合成与电化学性能研究
[Abstract]:In the face of more and more serious energy problems, people are eager to seek an efficient energy storage device to realize the effective utilization of energy. The emergence of supercapacitors has changed the limitations of low power density of secondary batteries and low energy density of ordinary capacitors, and has become a research hotspot in various fields. The selection of electrode material determines the performance of supercapacitor. Conductive polymer polypyrrole (PPy) is a widely used electrode material in supercapacitors due to its low cost, simple synthesis method, low oxidation potential and good stability. The intrinsic state of polypyrrole is poor in conductivity, but in the doped state, the conductivity and electrochemical activity of polypyrrole are enhanced. In order to optimize the electrochemical performance of polypyrrole, doped polypyrrole and multi-walled carbon nanotubes modified polypyrrole electrode materials were synthesized by cyclic voltammetry in acidic system. Fourier transform infrared spectroscopy (FT-IR) was used. X-ray diffraction (XRD), field emission scanning electron microscopy (SEM),) transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the structure and morphology of the (GCD),. The structure and morphology were characterized by cyclic voltammetry (CV), constant current charge-discharge (GCD),. The electrochemical properties were studied by AC impedance (EIS) and other methods. The main contents are as follows: (1) the protonic acid doped polypyrrole (PPy). Was synthesized on stainless steel by cyclic voltammetry using H_2SO_4 and HNO_3 as polymerization electrolyte respectively. The microstructure, structure and electrochemical properties were studied. The results show that the PPy/HNO_3 electrode material has a porous coral-like structure, while PPy/H_2SO_4 has a cauliflower-like structure. When the current density is 5 Ma cm~ (- 2), the specific capacitance of PPy/0.5M HNO_3 in 0.5 mol L ~ (- 1) (M) H_2SO_4 electrolyte is 596 F 路g ~ (- 1), and the specific capacitance is 95.9% after 1000 cycles. In 1.0m HNO_3 electrolyte, the specific capacitance of PPy/0.1 M H_2SO_4 is 442F g ~ (- 1), and the specific capacitance is 70.6% after 1000 cycles. The polypyrrole electrode materials doped with HNO_3 exhibited better electrochemical properties. (2) using pyrrole as monomer in sulfuric acid medium, three different transition metal ions (Ni~ (2), Fe~ (2) and Cu~ (2) were used as dopants. Three transition metal ion doped polypyrrole electrode materials were synthesized by cyclic voltammetry on stainless steel net. The electrochemical properties of polypyrrole were studied and the effects of transition metal ions on polypyrrole were investigated. The results show that when the current density is 5 Ma cm~ (- 2), in 1.0m HNO_3 electrolyte, PPy/0.1M Ni~ (2), The specific capacitance of PPy/0.5 M Fe~ (2) and PPy/0.1 M Cu~ (2) electrode materials is 517679 and 764 F g ~ (- 1), respectively. After 1000 cycles, the specific capacitance remains 80.5%, 82.7% and 83.8% respectively. The smaller the radius of transition metal ions and the larger the neutron potential, the larger the specific capacitance of the electrode material. (3) on the basis of the above (2), multi-walled carbon nanotubes (MWCNTs) impregnated stainless steel mesh with mixed acid treatment. Cu~ (2)-doped polypyrrole / multi-walled carbon nanotubes composite electrode materials were prepared by cyclic voltammetry. The effect of carbon nanotubes on the electrochemical properties of polypyrrole was systematically studied. The results showed that PPy and MWCNTs formed a core-shell structure composite. The refluxing time of MWCNTs treated with mixed acid was 1 h, and the specific capacitance of the composite was 1269 F g ~ (- 1) when the amount of multi-walled carbon nanotubes in the deposition electrolyte was 0.8%, and the specific capacitance of the composite was 1269 F 路g ~ (- 1). The specific capacitance retention rate is 88.1% after 1000 cycles at a sweep rate of 50 MV Ss ~ (- 1).
【学位授予单位】:兰州理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O633.5;TB332;O646
【参考文献】
相关期刊论文 前10条
1 谢凝钰;彭志华;郭萍;吴喜军;胡林华;张亚楠;;碳纳米管聚合物复合材料导电性能研究[J];洛阳理工学院学报(自然科学版);2016年02期
2 吴雪;沈俊海;陈海峰;李良超;李涓碧;丁艳;;聚吡咯/碳纳米管复合物的制备及电性能研究[J];原子与分子物理学报;2014年06期
3 贾志军;王俊;王毅;;超级电容器电极材料的研究进展[J];储能科学与技术;2014年04期
4 余稀;但涛;;超级电容器在电动汽车中的应用[J];电子元件与材料;2014年01期
5 刘怡;张世超;张兰;温博华;杜志甲;;聚吡咯纳米线的电化学可控性生成与表征[J];电源技术;2012年01期
6 刘春娜;;超级电容器应用展望[J];电源技术;2010年09期
7 宗和;;办出一个“低碳世博”——上海世博会低碳亮点盘点[J];上海质量;2010年06期
8 傅清宾;高博;苏凌浩;原长洲;卢向军;张校刚;;氢键诱导的聚吡咯/苯磺酸功能化多壁碳纳米管的制备及其电化学行为[J];物理化学学报;2009年11期
9 罗俊;;一轴四馆“绿”意盎然——上海世博会建筑环保先[J];中华建设;2009年06期
10 田颖;李浙齐;徐洪峰;吴艳波;杨凤林;;不同电解质溶液对聚吡咯修饰膜性质的影响[J];物理化学学报;2008年04期
相关博士学位论文 前4条
1 王雪;改善导电聚合物电极材料电化学循环稳定性的方法研究[D];兰州大学;2015年
2 王凯;超级电容器的制备及性能研究[D];大连理工大学;2014年
3 孟繁慧;基于新型纳米结构超级电容器材料的研究[D];山东大学;2013年
4 朱日龙;聚吡咯的电化学合成、应用及防蚀机理研究[D];湖南大学;2009年
相关硕士学位论文 前8条
1 巩士磊;电化学沉积法制备3D结构Ni(OH)_2/C电极材料及电容性能研究[D];太原理工大学;2016年
2 王俊;超级电容器电极材料的制备和电化学性能研究[D];内蒙古科技大学;2015年
3 刘宁;超级电容储能系统在风力发电低电压穿越中的应用研究[D];青岛大学;2015年
4 刘珍;聚吡咯/石墨烯复合材料的制备及其用于超级电容器电极材料的性能研究[D];华中师范大学;2014年
5 林幼贞;掺杂聚吡咯及复合材料用作超级电容器电极材料的研究[D];华侨大学;2012年
6 王冠;超级电容器电极材料的制备及其性能的研究[D];清华大学;2011年
7 甄晓燕;过渡金属离子修饰聚苯胺电极的表征及性能研究[D];河北师范大学;2011年
8 杜冰;导电聚吡咯及其复合材料用作超级电容器电极材料的研究[D];西南交通大学;2009年
,本文编号:2437439
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2437439.html