内含中空纤维型复合材料自修复效率及力学性能
[Abstract]:Fiber reinforced composites are more and more used in aerospace, automobile and other fields because of their high specific strength and specific stiffness. However, most of its basic structural forms are laminate structure, and there are some problems in the process of lamination, such as the lack of reinforced fiber and so on. When the laminate is subjected to external load, the interlaminar cracking occurs easily, so as to reduce the overall stiffness and strength of the structure, and even damage the laminated plate, so that its application is limited. Therefore, it is very important to repair the crack and damage site by self-repairing method, so as to prolong the service life of the material. The hollow glass tube with the outer diameter 桅 0.9mm was placed in the interior of the carbon fiber epoxy resin matrix composite laminate. The epoxy resin was selected as the repairing agent. After curing, the standard specimen was cut into three-point bending. Some specimens were subjected to quasi-static indentation test, then self-repair was carried out by thermal excitation, and three-point bending test was carried out on all specimens after repair. The experimental results show that (1) the transverse placement of hollow glass tubes in laminates will not reduce the mechanical properties of the laminate itself; (2) in quasi-static indentation experiment, the damage degree will increase with the increase of loading load. When the load of quasi-static indentation experiment is 1 700 N, the bending resistance of the specimen decreases by 37%. The hollow glass pipe in the laminate is destroyed by quasi-static indentation experiment. The repairing agent in the pipe can quickly flow to the damaged part of the laminate, repair the crack, glue the crack, and play the purpose of repairing. The maximum flexural strength of the damaged specimen can be recovered to 109% of the original strength. Referring to the placement mode of "z-pin" in composite laminate, the hollow glass pipe with the outer diameter 桅 0.9mm was implanted into the prepreg material along the thickness direction, and ENB was used as the repairing agent to construct the self-repairing system. After the prepreg laminate is solidified, it is machined into double cantilever beam and three-point bending specimen. Through the comparative analysis of pressure failure test, three-point bending test and double cantilever beam experiment, it is known that 1 in the pressure failure experiment, the bending resistance of the specimen is reduced by 11.91% maximum by the pressure of 8KN; The repair system composed of 2ENB and Grubbs catalysts can repair any layer crack in the laminate, and the bending strength of the damaged specimen can be restored to 96.63% of the original strength. 3 in the experiment of double cantilever beam, the vertical hollow glass tube can toughen the laminate, and the toughening effect increases with the increase of the distribution density of the hollow glass tube, and the maximum fracture load value increases by 33.26%. The quasi-static indentation experiment and three-point bending experiment were carried out by using epoxy resin as repairing agent and referring to the placement mode of "z-pin" in composite laminate, using the above-mentioned experimental methods and experimental process to carry out the quasi-static indentation experiment and three-point bending experiment. The experimental results show that 1the vertical placement of hollow glass tube in laminates can improve the bending resistance of laminated plates, and the bending resistance of specimens is increased by 32.24% under the same working condition; 2 in quasi-static indentation experiment, the damage degree increases with the increase of loading load. When the load of quasi-static indentation experiment is 5KN, the bending resistance of the three types of specimens decreases by 57.83%. The epoxy resin repair system in the laminate can repair any layer crack in the laminate, and the repair efficiency increases with the increase of the distribution density of the hollow glass tube, and the repair efficiency increases with the increase of the distribution density of the hollow glass tube. The maximum flexural strength of the damaged specimen can be recovered to 66.85% of the original strength.
【学位授予单位】:天津工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TB332
【相似文献】
相关期刊论文 前10条
1 何陵辉;层合板应力的一种简单计算方法[J];复合材料学报;1994年03期
2 谭惠丰,于增信,杜星文;层合板六参量几何非线性高阶剪切理论[J];固体力学学报;2000年01期
3 崔建国,傅永辉,李年,孙军,何家文;金属/金属层合板疲劳性能研究[J];金属学报;2000年03期
4 陈晓,许可,戴诗亮;层合板分叉方程的Lyapunov-Schmidt约化分析[J];固体力学学报;2001年03期
5 朱海堂,张献瑞,谌续国;用P型有限元分析层合板的应力[J];郑州工业大学学报;2001年04期
6 崔海涛,温卫东,郝勇;碳纤维增强复合材料含孔层合板损伤破坏分析研究进展[J];材料导报;2002年02期
7 Ali Al-Mansour,程小全,寇长河;单面贴补修理后层合板的拉伸性能[J];复合材料学报;2005年03期
8 张二亮;张卫红;邱克鹏;;基于材料-结构协同设计的层合板多级优化方法[J];机械科学与技术;2006年01期
9 章继峰;张博明;杜善义;;基于健康监测的层合板结构载荷重构[J];力学与实践;2007年04期
10 陈建桥;彭文杰;魏俊红;顾明凯;;考虑内部损伤影响的层合板最终强度预测[J];固体力学学报;2009年01期
相关会议论文 前10条
1 彭文杰;陈建桥;;层合板自由边处分层应力的优化研究[A];节能环保 和谐发展——2007中国科协年会论文集(一)[C];2007年
2 张培伟;熊峰;王东平;;双向编织碳纤维层合板的振动破坏[A];中国力学大会——2013论文摘要集[C];2013年
3 周晔欣;黄争鸣;;新的极限强度判据和刚度衰减对桥联理论模拟层合板精度的改善[A];复合材料力学的现代进展与工程应用——全国复合材料力学研讨会论文集[C];2007年
4 佟丽莉;葛源源;;铺层角度和厚度偏差对层合板热性能的影响[A];第十五届全国复合材料学术会议论文集(下册)[C];2008年
5 邵闯;葛森;陶华;;层合板的声响应分析[A];中国航空结构动力学专业组第十六届学术交流会论文集[C];2008年
6 康军;关志东;黎增山;丁聪;黄志强;;复合材料开口层合板拉伸应变集中与失效分析[A];第十四届中国科协年会第11分会场:低成本、高性能复合材料发展论坛论文集[C];2012年
7 卿尚波;晏麓晖;;纤维层合板抗弹性能数值模拟分析[A];第18届全国结构工程学术会议论文集第Ⅲ册[C];2009年
8 戴相花;高存法;;含椭圆孔磁电弹层合板的弯曲问题研究[A];第16届全国疲劳与断裂学术会议会议程序册[C];2012年
9 刘治东;唐颀;庞宝君;;基于等时差波阵面的层合板声发射源定位[A];第十五届全国复合材料学术会议论文集(下册)[C];2008年
10 徐颖;温卫东;崔海坡;;低速冲击下的层合板逐渐损伤扩展模拟[A];第十六届玻璃钢/复合材料学术年会论文集[C];2005年
相关博士学位论文 前10条
1 蔡晓江;基于复合材料各向异性的切削力热变化规律和表面质量评价试验研究[D];上海交通大学;2014年
2 张文姣;纤维增强复合材料的疲劳损伤模型及分析方法[D];哈尔滨工业大学;2015年
3 宫文然;含分层损伤复合材料(CFRP)层合板结构屈曲和后屈曲力学行为研究[D];天津大学;2015年
4 邵雪飞;具界面损伤功能梯度/纤维金属层合板非线性力学行为研究[D];湖南大学;2016年
5 阮江涛;含冲击损伤缝合和未缝合层合板压缩实验研究与数值分析[D];天津大学;2012年
6 彭文杰;复合材料层合结构极限强度预测方法及分层应力最小化研究[D];华中科技大学;2009年
7 谢昱;层合板的应力分析及其剥离[D];清华大学;1988年
8 辛士红;纤维增强树脂基复合材料层合板抗侵彻性能数值模拟研究[D];中国科学技术大学;2015年
9 王丹勇;层合板接头损伤失效与疲劳寿命研究[D];南京航空航天大学;2006年
10 刘军;损伤对层合板分层尖端场的影响及层间强韧化分析[D];东北大学;2006年
相关硕士学位论文 前10条
1 陈磊;正交异性层合板在力载和热载下静、动态响应的数值模拟[D];合肥工业大学;2012年
2 刘奇;应用纤维束复合材料试验研究层合板界面性能[D];华南理工大学;2015年
3 张科;层合板结构振动分析的无网格方法[D];苏州大学;2015年
4 孙筱辰;纤维复合材料层合板的层间增韧及低速冲击研究[D];山东大学;2015年
5 姚宇地;含预置分层层合板的分层扩展及其屈曲行为研究[D];哈尔滨工业大学;2015年
6 莫佳亮;损伤对均质和复合材料阻尼性能影响研究[D];南京航空航天大学;2014年
7 彭文辉;层合板结构的振动和稳定性分析及其优化设计[D];南昌航空大学;2015年
8 林志明;层合板结构声振特性及声辐射最小化优化分析[D];南昌航空大学;2015年
9 陈敬宜;碳纤维层合板面内压缩强度研究[D];太原理工大学;2016年
10 陈熹;压电/磁电层合板的振动分析[D];中北大学;2016年
,本文编号:2442204
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2442204.html