碳纳米管的分散性研究及其与聚乙烯醇复合纤维的制备
[Abstract]:In this paper, the surface modification of multi-walled carbon nanotubes (MWCNTs) was carried out by means of physical and chemical methods, and the hydrophilic groups were grafted onto them to improve their dispersibility in solvent. The modified carbon nanotubes (CNTs) were blended with polyvinyl alcohol (PVA), and the PVA/MWCNTs composite fibers were prepared by wet spinning and hot drawing. The structure and properties of the composite fibers were studied. The main contents and conclusions are as follows: (1) PVA was grafted onto the surface of MWCNTs by Fourier alkylation, and the optimum reaction conditions were optimized by comparison. Nuclear magnetic resonance (13C NMR) and Raman spectroscopy (Raman spectra) proved the chemical bonding between PVA and carbon tube. The functionalized MWCNTs (f-MWCNTs) was dispersed in the solvent (DMSO/H2O (vol ratio=3/1) and placed at room temperature for a period of time to observe its dispersion. The dispersion was observed by ultraviolet-visible spectrophotometer (UV-vis). The degree of dispersion of CNTs was observed by transmission electron microscope (TEM). The results showed that CNTs could be dispersed uniformly in solvent. In addition, the traditional treatment of MWCNTs with Wang Shui to bring carboxyl groups on its surface and improve its water solubility was also carried out as a contrast test. The experimental and test results show that the surface of MWCNTs treated by Wang Shui has serious damage, and there are a lot of defects in the graphite layer on the surface of carbon tube. However, the structure of CNTs treated by Fourier alkylation was almost undamaged. (2) the best dispersed f-MWCNTs and PVA were prepared by wet spinning and hot drawing of PVA/f-MWCNTs composite fibers. The mechanical, thermal, surface morphology and conductive properties of the fibers were studied. The results showed that the strength and modulus of PVA/f-MWCNTs composite fibers were 280.6% and 421.0% higher than those of pure PVA fibers, respectively. The results of differential scanning calorimetry (DSC) (DSC) showed that the introduction of CNTs decreased the crystallization properties of PVA, while the (SEM) images of scanning electron microscopy (SEM) indirectly showed that in the composite fibers, the crystalline properties of CNTs were decreased. At first, with the increase of the content of carbon nanotubes, the bonding force between carbon nanotubes and polymer matrix gradually increased, but when the content of carbon nanotubes reached a certain content, there would be agglomeration phenomenon. Furthermore, the mechanical and conductive properties of composite fibers are seriously affected. The thermal stability and mechanical properties of the carbon tube treated by Wang Shui under the same conditions are much lower than that of the f-MWCNTs composite fiber. (3) as a comparison with the chemical modification, the fiber obtained by Wang Shui is much lower in thermal stability and mechanical properties. Carbon nanotubes (CNTs) were modified with rosemary acid (RosA) and other dispersants (tannic acid, sodium dodecyl benzene sulfonate and procyanidins) respectively. The dispersion of CNTs was observed at room temperature for a period of time. The dispersion of CNTs was observed by TEM,. The solution was characterized by UV-vis spectra. The results showed that RosA-modified carbon nanotubes (m-MWCNTs) could be stably dispersed in aqueous solution for up to 30 days at room temperature. TEM showed that the regular graphene structure of CNTs was not destroyed. Nuclear magnetic resonance (1H NMR) and Raman spectra show that there exists between multi-walled carbon nanotubes (MWNTs) and RosA. Stacking interaction. (4) blending of RosA modified carbon tubes and polyvinyl alcohol solution. PVA/m-MWCNTs composite fibers were prepared by wet spinning and hot drawing. It was shown that the introduction of m-MWCNTs was equivalent to the introduction of nucleating agent in the system, and its crystallization became easier. The test of mechanical properties shows that the introduction of carbon tube can improve the strength and modulus of the fiber, but it has no great effect on the surface of the fiber.
【学位授予单位】:苏州大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TB383.1;TQ342.94
【相似文献】
相关期刊论文 前10条
1 王鹏飞;用于合成纤维的分散性染料[J];化学世界;1963年09期
2 ;分散性染料工艺配方改革[J];上海纺织科技动态;1978年06期
3 顾莉英;;西德1983年用于建筑的分散性涂料的生产情况[J];化学建材通讯;1985年01期
4 章杰;;提高颜料分散性的新技术[J];涂料工业;1987年04期
5 张根生;赵全;李继光;岳晓霞;;影响大豆分离蛋白分散性因素的研究[J];食品工业科技;2006年03期
6 ;分散性染料印刷标牌工艺[J];仪器制造;1981年02期
7 田涛;电镀锌钢丝锌层重量分散性研究[J];金属制品;1989年02期
8 王平,宋兰花,黄毓礼;非水介质中磁粉对吸附质的吸附量与分散性的关系[J];北京化工学院学报(自然科学版);1990年01期
9 杜伟坊;杜海清;;高铝质电瓷材料的强度分散性研究[J];电瓷避雷器;1990年06期
10 王岳俊;周康根;蒋志刚;;加料方式对超细氧化亚铜粉体分散性与粒度稳定性的影响[J];无机材料学报;2012年02期
相关会议论文 前10条
1 熊华锋;姚卫星;;复合材料疲劳分散性和强度分散性关系[A];第十四届全国疲劳与断裂学术会议论文集[C];2008年
2 廖明义;张伟清;单薇;;蒙脱土的表面修饰及其在非极性溶剂中分散性的研究[A];纳米材料与技术应用进展——第四届全国纳米材料会议论文集[C];2005年
3 张晖;孙明清;李卓球;;水泥基复合材料中碳纤维的分散性研究[A];第五届中国功能材料及其应用学术会议论文集Ⅱ[C];2004年
4 彭俊;昝菱;;纳米二氧化钛的分散性研究[A];第四届中国功能材料及其应用学术会议论文集[C];2001年
5 王长江;姚卫星;;飞机载荷分散性研究[A];第十五届全国疲劳与断裂学术会议摘要及论文集[C];2010年
6 李小红;刘峰;张治军;党鸿辛;王树銮;;可分散性SiO_2纳米微粒的结构及摩擦学性能[A];第十三届全国电子显微学会议论文集[C];2004年
7 董世运;涂伟毅;徐滨士;;复合电解质溶液中纳米SiO_2颗粒分散性及其表面动电电位[A];中国颗粒学会2004年年会暨海峡两岸颗粒技术研讨会会议文集[C];2004年
8 戴晋明;王淑花;高向华;魏丽乔;许并社;;纳米SiO_2复合抗菌材料分散性的研究[A];纳米材料和技术应用进展——全国第三届纳米材料和技术应用会议论文集(下卷)[C];2003年
9 张荣波;许崇海;冯日美;肖光春;;Al_2O_3/TiC_(0.7)N_(0.3)及ZrO_2/TiC_(0.7)N_(0.3)两相纳米复合粉体悬浮液分散性的研究[A];《硅酸盐学报》创刊50周年暨中国硅酸盐学会2007年学术年会论文摘要集[C];2007年
10 万刚强;李东祥;侯万国;;聚乙二醇修饰的层状双金属氢氧化物的形貌和分散性研究[A];中国化学会第十三届胶体与界面化学会议论文摘要集[C];2011年
相关重要报纸文章 前1条
1 蒋霖;分散性产险产品营销渠道探析[N];中国企业报;2006年
相关硕士学位论文 前9条
1 张培;碳纳米管的分散性研究及其与聚乙烯醇复合纤维的制备[D];苏州大学;2015年
2 熊华锋;复合材料疲劳分散性与强度分散性的关系[D];南京航空航天大学;2009年
3 赵多;水热合成法制备氧化锆及分散性的研究[D];辽宁科技大学;2014年
4 冒爱琴;超细二氧化钛的表面处理及其在水中分散性的研究[D];南京理工大学;2004年
5 江柯敏;球状及其它新型炭材料的制备与表征[D];暨南大学;2007年
6 杨林江;聚苯胺修饰碳载体担载Pd催化剂分散性与稳定性DFT研究[D];重庆大学;2011年
7 高铭泽;纳米SiO_2复合环氧树脂中纳米粒子分散性与介电性关系[D];哈尔滨理工大学;2014年
8 牛冬子;二氧化硅基复合功能微球的制备及其应用[D];中国海洋大学;2012年
9 高莲花;纳米气泡对疏水颗粒分散性影响的研究[D];上海师范大学;2012年
,本文编号:2442835
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2442835.html