高稳定性磁流变液的试验及力学性能研究
[Abstract]:The magneto-rheological fluid is a suspended liquid formed by uniformly dispersing the magnetic particles of the micron or nanometer level in the base liquid, the main components of which are magnetic particles, a carrier liquid and various additives. Under the effect of the applied magnetic field, the flow state can be rapidly changed from the flowing liquid state at the instant (millisecond level), and the flow state can be recovered again after the magnetic field is removed. Such rheological properties of the magnetorheological fluid can be used to design the magnetorheological damper. As a new type of intelligent material, the magnetorheological fluid has the advantages of large damping output, less energy consumption, real-time control, high precision and the like, and has good damping effect. Therefore, the performance of the magneto-rheological fluid will directly affect the ability of the MR damper to function normally. In order to make the magneto-rheological damper achieve the above-mentioned advantages, the magnetorheological fluid should have the characteristics of good stability, difficult agglomeration, low zero field viscosity, high shear yield stress and the like. At present, the researchers at home and abroad have made a lot of research on the magneto-rheological fluid, and some results have been obtained, but the high-performance magneto-rheological fluid is prepared, and the micro-model for describing the magneto-rheological behavior of the magneto-rheological fluid is established. There are still some problems to be solved in the design of shear yield stress testing device, and the research work of the magneto-rheological fluid still needs to be carried out further and in-depth. In this paper, the method of preparation, rheological and mechanical behavior of the magneto-rheological fluid is studied from the basic properties of the magneto-rheological fluid by means of the combination of the test and the theory, the macroscopic and the micro-micro-simultaneous methods, and the magnetorheological fluid with high stability is prepared by the method, the rheological property and the mechanical behavior of the magnetorheological fluid, The initial inclined chain model of the magneto-rheological fluid with carbon-coated particles is put forward, and the integrated testing device for shear yield stress of the magneto-rheological fluid is developed and developed. This paper deals with the fields of ferromechanics, fluid mechanics, electromagnetics, material chemistry and so on, and has obtained some conclusions with certain reference value through experimental observation and theoretical analysis. The research work in this paper is mainly characterized by the following aspects:1) The preparation of multi-wall carbon nano-tube coated magnetic particles, the study of the dosage of each material and the preparation process, preferably the composite magnetic particle with the best coating effect; 2) the prepared multi-wall carbon nano-tube coated magnetic particles are combined with the surface active agent modified magnetic particles developed by the research group in advance, and the magnetorheological fluid with different proportions is prepared by adopting different volume fractions and adding different amounts of additives; 3) The stability, zero-field viscosity and shear yield stress of the developed magnetorheological fluid are tested, the influence of the dosage ratio of the two composite magnetic particles, the volume fraction of the magnetic particle and the dosage of the additive on the performance of the magneto-rheological fluid is studied, and the magneto-rheological fluid with good indexes is obtained, and 4) designing a parallel disk type magnetorheological fluid shear yield stress integrated test device based on the working mode improvement of the magnetorheological fluid, The research on the sensor and the data acquisition has developed an integrated test device with uniform magnetic field and convenient use, and 5) based on the chain-forming rule and the chain-forming mechanism of the magneto-rheological fluid, based on the dipole theory, the initial inclined chain model of the magneto-rheological fluid added with the carbon-coated particles is deduced, The influence of the magnetic induction intensity and volume fraction on the shear yield stress is analyzed from the micro-level, and the theoretical analysis results of the model are compared with the test results, and the correctness of the initial inclined chain model of the magneto-rheological fluid to which the carbon-coated particles are added is verified. The innovation of the invention is that:1) multi-wall carbon nano-tube-coated magnetic particles are prepared, and the magnetic rheological fluid is developed together with the surfactant-modified magnetic particles as mixed magnetic particles, The test results show that the addition of the multi-wall carbon nanotube coated magnetic particles can improve the stability of the magneto-rheological fluid, and at the same time, the influence of the dosage ratio of the two magnetic particles on the settlement rate and the zero-field viscosity of the magneto-rheological fluid is obtained. 2) Perfect and develop a parallel disk type magneto-rheological fluid shear yield stress integrated test device;3) put forward the initial inclined chain model of the magneto-rheological fluid to which the carbon-coated particles are added, and compare it with the test results.
【学位授予单位】:东南大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TB381;TB302
【相似文献】
相关期刊论文 前10条
1 赵晓昱,赵波;应用于车辆工程的磁流变液组成机理的探讨[J];汽车技术;2004年10期
2 赵雯;张秋禹;王结良;张军平;;磁流变液及其应用[J];材料导报;2004年05期
3 郑军,曹兴进;磁流变液特性及其装置在工程领域中的应用[J];现代制造工程;2005年06期
4 王可俐,廖昌荣,陈爱军,陈伟民;磁流变材料流变学参数与检测方法[J];传感器技术;2005年06期
5 郝瑞参,李德才;磁流变体的发展特性及应用前景[J];机械工程师;2005年07期
6 李海涛;彭向和;陈伟民;;磁流变液流变特性的数值模拟分析[J];功能材料;2006年05期
7 胡皓;彭小强;戴一帆;;磁流变抛光液流变性测试研究[J];仪器仪表学报;2007年05期
8 阮承斌;蒋贤芳;;磁流变液稳定性研究[J];新技术新工艺;2008年12期
9 王鸿云;郑惠强;李泳鲜;;磁流变液的研究与应用[J];机械设计;2008年05期
10 王鸿云;郑惠强;李泳鲜;;磁流变液技术及应用研究[J];材料导报;2008年06期
相关会议论文 前10条
1 张建;张进秋;贾进峰;;基于不同母液的磁流变液的特性分析[A];中国化学会、中国力学学会第九届全国流变学学术会议论文摘要集[C];2008年
2 ;第六届全国电磁流变液及其应用学术会议简介[A];第六届全国电磁流变液及其应用学术会议程序册及论文摘要集[C];2011年
3 李金海;张松林;;磁流变液的颗粒沉降理论分析与实验[A];第六届全国电磁流变液及其应用学术会议程序册及论文摘要集[C];2011年
4 关新春;欧进萍;;一种优质磁流变液的研制[A];2000年材料科学与工程新进展(上)——2000年中国材料研讨会论文集[C];2000年
5 李金海;关新春;欧进萍;;磁流变液的配制及其流变模型的研究[A];第五届中国功能材料及其应用学术会议论文集Ⅰ[C];2004年
6 程灏波;王英伟;冯之敬;;永磁流变抛光中磁流变液的性能研究[A];第五届中国功能材料及其应用学术会议论文集Ⅰ[C];2004年
7 杨绍普;郭树起;;磁流变智能材料的性质及其应用[A];第七届全国非线性动力学学术会议和第九届全国非线性振动学术会议论文集[C];2004年
8 林忠华;;磁流变液的介电常数研究[A];福建省科协第五届学术年会数字化制造及其它先进制造技术专题学术年会论文集[C];2005年
9 王海霞;阮予明;孔笋;王捷;;磁流变液流变性实验及分析[A];中国化学会、中国力学学会第九届全国流变学学术会议论文摘要集[C];2008年
10 ;第六届全国电磁流变液及其应用学术会议组织机构[A];第六届全国电磁流变液及其应用学术会议程序册及论文摘要集[C];2011年
相关重要报纸文章 前3条
1 茆琛 李平;我国磁流变悬挂控制系统取得核心技术突破[N];大众科技报;2006年
2 杨孝文;5项新奇而可怕的军事技术[N];中国国防报;2009年
3 巴文;巴斯夫羰基铁粉磁流变液面市[N];中国化工报;2009年
相关博士学位论文 前10条
1 陈飞;磁流变液制备及动力传动技术研究[D];中国矿业大学;2013年
2 邢健;基于磁流变液阻尼器的转子系统振动主动控制研究[D];北京化工大学;2015年
3 罗善德;基于Biot理论的电磁流变液吸声特性研究[D];华中科技大学;2015年
4 苗运江;磁流变液屈服应力测试影响因素与磁流变液软启动装置的研究[D];中国矿业大学;2009年
5 易成建;磁流变液:制备、性能测试与本构模型[D];重庆大学;2011年
6 张峰;磁流变抛光技术的研究[D];中国科学院长春光学精密机械与物理研究所;2000年
7 赵春伟;基于微结构的磁流变液力学性能研究[D];重庆大学;2014年
8 崔治;磁流变液装置研究及其在非球面研抛中的应用[D];吉林大学;2009年
9 程海斌;磁流变液的稳定性调控及其在重大工程中应用[D];武汉理工大学;2012年
10 周洪亮;环冷机磁流变液密封理论与试验研究[D];燕山大学;2013年
相关硕士学位论文 前10条
1 杨岩;磁流变液离合器的设计与试验分析[D];重庆大学;2005年
2 毕成;磁流变液挤—剪特性研究及其在离合器中的仿真应用[D];浙江工业大学;2013年
3 徐彪;基于磁流变原理的旋转件加载装置研究[D];上海工程技术大学;2015年
4 叶盾;新型微纳米磁流变液及其性能研究[D];上海应用技术学院;2015年
5 余浩;磁流变液阻尼器及其性能研究[D];上海应用技术学院;2015年
6 季海峰;复合场下磁流变液圆筒模型剪切应力特性研究[D];浙江师范大学;2015年
7 徐江;小工具头磁流变抛光工艺及抛光轨迹研究[D];哈尔滨工业大学;2015年
8 王冬冬;硅油基磁流变液传动特性研究[D];中国矿业大学;2015年
9 李三妞;基于磁流变液拖拉机半主动座椅悬架减振系统研究[D];河南科技大学;2015年
10 杨沫;磁流变液剪切力检测技术研究[D];西安工业大学;2013年
,本文编号:2446343
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2446343.html