稀土掺杂氟化物多层核壳纳米晶上转换和量子剪裁的研究
[Abstract]:The special optical property of the rare-earth doped material has wide application in the field of solar cells, biological imaging, biological sensors and the like. in particular in that field of solar cell, the rare-earth-doped luminescent material can effectively solve the problem of low conversion rate of the solar cell aiming at the two loss effect: the photons which are lower than the band-gap width of the light-absorbing material are converted into the absorption range by the up-conversion; By the quantum cutting process, a high-energy photon is cut into two or more photons with low energy, and the problem that the ultraviolet high-energy photon cannot be effectively absorbed can be solved. At present, however, research in this area is focused on the bulk material. In view of the above problems, this paper designs a rare-earth fluoride multi-layer core-shell structure, realizes the up-conversion of photons below the silicon band gap width, realizes the quantum cutting of the high-energy photons of the ultraviolet light, and realizes the common action of the two light-emitting mechanisms in a nano-crystal. In the single-doping system of Er ~ (3 +), Ho ~ (3 +) and Tm ~ (3 +), the photons of the band below the band gap (1100 nm) are converted into the silicon band gap (1100 nm) by the up-conversion process. The light-emitting performance of Er ~ (3 +) single-doping system (1523 nm) in three kinds of fluoride-doped nanocrystalline matrix is studied. The results show that NaYF _ 4 is the best matrix. The doping concentration of Er ~ (3 +) in the NaYF _ 4 matrix is adjusted. When the doping concentration is 10%, the conversion luminescence is the strongest. in that method, a layer of homogeneous inert shell layer is respectively coat on the surface of the three Er-(3 +) single-doped nano-crystal by an epitaxial growth method, and the luminescence intensity of the nano-crystal of the three matrix core-shell structure is obviously increased compared with that of the nuclear nano-crystal, wherein the effect of NaYF _ 4:10% Er-(3 +) @ NaYF _ 4 is the best; The quantum yield was 3.9% higher than that of the other two core-shell structures, and the luminous intensity was the highest in the currently reported Er ~ (3 +) single-doped system. The single-doping system of Ho ~ (3 +) (1157 nm) and Tm ~ (3 +) (1213 nm) single-doping system were studied with NaYF _ 4 as the matrix. When NaYF _ 4 is selected as a matrix, the three ions of Er ~ (3 +), Ho ~ (3 +), Tm ~ (3 +) are respectively doped in different shell layers, and the cross-relaxation between the doped layer and the doped layer is prevented by introducing an inert isolation layer between each active layer. Synthesis of NaYF _ 4:10% Er ~ (3 +) @ NaYF_4@NaYF_4:10% Ho ~ (3 +) @ NaYF_4@NaYF_4:1% Tm ~ (3 +) @ NaYF _ 4 multi-layer core-shell structure. Compared with NaYF _ 4:10% Er ~ (3 +) @ NaYF _ 4:10% Ho ~ (3 +) @ NaYF _ 4:1% Tm ~ (3 +) @ NaYF _ 4:1% Tm ~ (3 +) @ NaYF _ 4 multi-layer core-shell structure, and the co-doped NaYF _ 4:10% Er ~ (3 +),10% Ho ~ (3 +),1% Tm ~ (3 +) @ NaYF _ 4 core-shell structure, the luminescence intensity is increased by 1.9 and 16.7 times respectively at 1523 nm laser excitation, and the luminous intensity is increased by 2.1 and 14.5 times respectively at the excitation of 1157 nm laser; Under the excitation of 1213 nm laser, the luminescence intensity was increased by 1.4 and 6.7 times, respectively. The up-conversion luminescence mechanism of Er ~ (3 +), Ho ~ (3 +) and Tm ~ (3 +) was studied. The excitation spectrum of the nano-crystal containing the multi-layer core-shell structure of the isolation layer is tested, and the response range of the infrared band below the silicon band gap is expanded to 270 nm. In this paper, the quantum cutting process of the (3 +)-Yb ~ (3 +)-doped pair, Pr ~ (3 +)-Yb ~ (3 +)-doped pair and Er ~ (3 +) single-doped fluoride nano-crystal on the ultraviolet light was studied with NaYF _ 4 as the matrix. Controlling the morphology and size of the nano-crystal of NaYF _ 4:2% Tb ~ (3 +), x% Yb ~ (3 +) (x = 0,20,40,60,80) by controlling the doping concentration of Tb ~ (3 +) to 2%, and obtaining the nano-particles with uniform size and uniform dispersion. It is found that with the increase of the doping concentration of Yb ~ (3 +), its quantum cut-off luminescence is enhanced; after more than 20%, the luminescence is gradually reduced. By studying the dependence of the luminescence intensity and the excitation power, the quantum cutting mechanism is proposed, and the quantum cutting efficiency is 183.7% by the theoretical calculation. The effect of the shell layer on the quantum cut of NaYF _ 4:2% Tb ~ (3 +), x% Yb ~ (3 +) (x = 0,20,40,60,80) was studied. Under the blanket of the inert shell, the emission of the quantum cut was enhanced, and the trend was changed compared with that of the core. The doping concentration of Yb ~ (3 +) is 80%, and the light emission is the strongest. The two processes of conversion (Er ~ (3 +)) and quantum cutting (Tb ~ (3 +)-Yb ~ (3 +)) are realized by multi-layer core-shell structure. The synthesis of NaYF _ 4:10% Er ~ (3 +) @ Na Lu F_4@NaYF_4:2% Tb ~ (3 +),20% Yb ~ (3 +) @ NaYF _ 4 core-shell structure nanocrystals, Na Lu F _ 4 as the intermediate isolation layer not only effectively weaken the cross relaxation in the two doped shell layers, but also the atomic mass difference of Lu and Y makes it possible to directly observe the structure of the multi-layer core-shell by the transmission electron microscope. The quantum efficiency of the upconversion and quantum cutting process was measured by relative method, and the quantum yield was about 3.6% by using NaYF _ 4:10% Er ~ (3 +) @ NaYF _ 4 as the standard sample. The quantum yield of the quantum cut was about 130%.
【学位授予单位】:哈尔滨工业大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TQ422;TB383.1
【相似文献】
相关期刊论文 前10条
1 单秉锐,邹玉林,刘燕行,臧竞存;上转换激光晶体研究进展[J];人工晶体学报;2004年05期
2 徐东勇,臧竞存;上转换激光和上转换发光材料的研究进展[J];人工晶体学报;2001年02期
3 洪广言;;新型红外变可见上转换薄膜问世[J];稀土信息;1993年03期
4 石连升;温猛;钱艳楠;王锐;郝铭;;Yb:Er:Tm:LiTaO_3的上转换发白光性能研究[J];中国稀土学报;2011年01期
5 陈奇丹;杨生;;上转换材料的制备及发展[J];广东化工;2012年08期
6 周永红;田玉鹏;吴杰颖;;有机上转换激光材料研究进展[J];化工时刊;2006年04期
7 张幸林;杨会然;孙会彬;刘淑娟;赵强;黄维;;基于三线态-三线态湮灭的能量上转换[J];化学进展;2012年10期
8 李鑫德;上转换荧光和激光[J];稀土信息;1997年07期
9 吴长锋,秦冠仕,秦伟平,陈宝玖,黄世华,刘晃清,赵丹;Er~(3+)/Yb~(3+)共掺杂AlF_3基氟化物玻璃材料的频率上转换[J];中国稀土学报;2001年06期
10 涂进春;韩星星;李晓天;李楠;黄玮;王小红;刘钟馨;曹阳;;α-NaYF_4:Yb,Er/SBA-15主客体复合材料的制备及其上转换性能的研究[J];化学工程师;2012年07期
相关会议论文 前10条
1 严冬;杨正文;竺侃;;A1_2Y_4O_9:Yb,Er反蛋白石中的上转换发射和颜色调谐[A];战略性新兴产业的培育和发展——首届云南省科协学术年会论文集[C];2011年
2 臧竞存;邹玉林;刘燕行;单秉瑞;;上转换激光晶体研究进展[A];中国硅酸盐学会2003年学术年会论文摘要集[C];2003年
3 孙雅娟;孔祥贵;张宏;;稀土掺杂上转换纳米晶作为表面荧光探针研究[A];第11届全国发光学学术会议论文摘要集[C];2007年
4 汪超;程亮;刘庄;;上转换纳米晶体癌症治疗的应用[A];中国化学会第28届学术年会第4分会场摘要集[C];2012年
5 叶常青;周宇扬;梁作芹;王筱梅;;1.新型蒽衍生物受体应用高效上转换体系的设计合成[A];中国化学会第29届学术年会摘要集——第21分会:光化学[C];2014年
6 彭桂芳;洪广言;贾庆新;李有谟;;红外变可见上转换材料薄膜的研制[A];首届中国功能材料及其应用学术会议论文集[C];1992年
7 谷战军;田甘;赵玉亮;;荧光上转换纳米材料的光谱调控及其在生物医学中的应用[A];中国化学会第29届学术年会摘要集——第35分会:纳米生物医学中的化学问题[C];2014年
8 高伟;李娇;高当丽;田宇;崔敏;孙瑜;阎晓庆;郑海荣;;颗粒形貌对六方相NaYbF_4:Pr~(3+)纳米晶体上转换荧光的影响[A];第七届全国稀土发光材料学术研讨会会议论文摘要集[C];2011年
9 黄淮青;密丛丛;王猛;孙盼;徐淑坤;;磁性稀土掺杂上转换纳米发光颗粒的合成及表征[A];第七届全国稀土发光材料学术研讨会会议论文摘要集[C];2011年
10 李娇;高伟;高当丽;田宇;郑海荣;;四方相LiYF4:Yb/Er晶体颗粒的合成及上转换荧光研究[A];2011西部光子学学术会议论文摘要集[C];2011年
相关博士学位论文 前10条
1 邵韦;稀土掺杂氟化物多层核壳纳米晶上转换和量子剪裁的研究[D];哈尔滨工业大学;2017年
2 仲崇娜;核壳结构上转换稀土化合物纳米晶的合成、发光性能及抗肿瘤研究[D];哈尔滨工程大学;2014年
3 牛娜;几种上转换稀土发光材料的合成与性能研究[D];哈尔滨工程大学;2013年
4 黎作鹏;体域纳米网络关键技术研究[D];哈尔滨工程大学;2014年
5 丁亚丹;红外上转换和吸收纳米材料的制备、性能与生物医学应用[D];东北师范大学;2015年
6 李亮;基于增强光吸收的DSSC电极修饰与光电性能研究[D];哈尔滨工业大学;2015年
7 高伟;镧系离子掺杂氟化物微纳晶体的荧光特性研究[D];陕西师范大学;2015年
8 谷野;诊疗一体化上转换纳米平台的构建及其肿瘤诊疗效果与生物安全性的研究[D];吉林大学;2016年
9 王浩;稀土上转换/硅基纳米复合材料的设计制备及生物医学应用研究[D];哈尔滨工业大学;2016年
10 岑瑶;基于上转换颗粒等新型纳米材料的生物传感方法研究[D];湖南大学;2016年
相关硕士学位论文 前10条
1 罗培;基于TiO_2:Yb,Ho,F的纳米载药体系的构建及应用[D];郑州大学;2017年
2 朱笑天;金纳米棒的制备与修饰及其在环境污染物检测中的应用[D];郑州大学;2017年
3 王静;细菌视紫红质—稀土上转换纳米粒子生物纳米体系的构建及其红外光电响应研究[D];西南大学;2015年
4 梅勇;上转换纳米晶的制备、调控和发光过程研究[D];辽宁大学;2015年
5 韩全泽;稀土离子掺杂氟化物上转换材料的两步合成及发光性质研究[D];大连海事大学;2015年
6 王宁;稀土掺杂BaLu_2F_8微米晶的可控制备及上转换光发射性能研究[D];哈尔滨工业大学;2015年
7 王荷;氧化铈基上转换发光粉体的制备、结构与发光性能研究[D];温州大学;2015年
8 高方绮;离子掺杂NaGdF_4:Ho~(3+)纳米棒上转换荧光的研究[D];陕西师范大学;2015年
9 杨扬;Er和Yb共掺杂稀土氧化物上转换纳米材料的制备及性能研究[D];北京化工大学;2015年
10 张令娥;NaGdF_4基复合纳米载体制备及其肿瘤诊断与治疗应用研究[D];宁波大学;2015年
,本文编号:2486154
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2486154.html