基于银纳米粒子的蛋白质与小分子荧光分析方法研究
[Abstract]:Aptamer is a single-stranded oligodeoxynucleotides screened by SELEX. Because of its various properties, such as high stability, easy synthesis and high specific binding to a variety of target molecules (small molecules, proteins and even whole cells), aptamers have received more and more attention. Because of its unique optical, electrical and catalytic properties, nanomaterials can interact with biomolecules, and then achieve the purpose of signal amplification and target recognition. The functional nanoparticles formed by the combination of the two have a wide range of application prospects in biological analysis and medical diagnosis. In this paper, we designed a simple and highly sensitive protein detection and analysis method based on the quenching effect of silver nanoparticles on fluorescence. Firstly, the aptamer modified with fluorescent molecules was self-assembled on the surface of silver nanoparticles, and the silver nanoparticles probe was synthesized. The adaptor fixed in 96 well plate and silver nanoparticles probe can be used as capture unit and detection probe, respectively, to complete the specific recognition of the added target protein PDGF-BB, and the three can form sandwich complex. At this time, due to the fluorescence resonance energy transfer effect of FRET (fluorescence resonance energy transfer, the fluorescence group is quenched by silver nanoparticles and the signal is in the "off" state. When the etch agent sodium thiosulfate is added, the silver nanoparticles are dissolved and the FRET effect is destroyed. the fluorescent molecules modified on the surface of the silver nanoparticles will be detached and released into the pore plate, and the signal "turn-on" will be released. The results showed that the concentration of the target protein PDGF-BB was proportional to the intensity of the detected fluorescence signal. This method can be used to detect the target protein with high sensitivity and specificity. This method has the following advantages: sandwich structure can greatly improve the specificity and sensitivity of detection, and the introduction of etch agent can change the signal from "off" to "on". This method can also be further extended to the analysis and detection of other proteins or small molecules through the reasonable design of aptamer molecules, and has a good application prospect in the field of analysis. The development of metal enhanced fluorescence (metal enhanced fluorescence, MEF) based on local surface plasmon resonance (LSPR (localized surface plasmon resonance,) with nano-metal structure broadens the application range of fluorescence analysis. Because of its unique surface plasmon resonance characteristics, silver nanoparticles can enhance many fluorescent molecular signals, so many applications have been developed by using the MEF effect of silver nanoparticles. In this paper, based on the MEF effect and FRET effect of silver nanoparticles, we establish a small molecular detection and analysis method. First of all, we self-assemble the fluorescent molecules to the surface of nano-silver, and then wrap a layer of silver shell in the outer layer of the fluorescent molecules to achieve the fluorescence enhancement effect of the fluorescent molecules. Then, the quenched molecular BHQ modified aptamers were connected to the silver shell to form a FRET sensor by nucleic acid hybridization. At this time, the fluorescence signal quenching of fluorescent molecules. When the target adenosine was added, the fluorescence signal of BHQ was recovered because of the specific binding of aptamer to adenosine. The experimental results show that there is a linear relationship between the recovery degree of fluorescence and the concentration of adenosine. This method makes full use of the characteristics of silver nanoparticles, has high sensitivity, strong specificity, simple operation and great potential.
【学位授予单位】:南京大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TB383.1;O614.122
【共引文献】
相关期刊论文 前10条
1 江国华;王立;陈涛;俞豪杰;;液相高分子保护纳米粒子形状可控制备研究进展[J];材料导报;2004年03期
2 余林海;莫志宏;万巧玲;钱俊臻;;纳米金对荧光素的荧光增效作用[J];分析化学;2006年09期
3 殷焕顺;艾仕云;汪建民;;制备金纳米粒子的研究进展[J];材料研究与应用;2007年04期
4 孙双姣,蒋治良;金纳米微粒的制备和表征及其在生化分析中的应用[J];贵金属;2005年03期
5 庄严,周群,李晓伟,董文明,郑军伟;银粒子的表面修饰及荧光表面增强效应[J];光谱实验室;2005年04期
6 井泉印;周群;赵金金;郑军伟;;纳米银组装结构的表面增强荧光效应[J];光谱实验室;2007年04期
7 杨兴旺;雷新宪;;SiO_2/Ag核壳结构纳米粒子的制备及其表面荧光增强[J];光谱实验室;2010年03期
8 罗阳;高维寅;张雪;府伟灵;;量子点的光学特征及其在检验医学中的应用[J];国际检验医学杂志;2010年03期
9 陈栋;黄庆;黄君富;府伟灵;;适配子及其临床诊断的应用进展[J];国际检验医学杂志;2011年04期
10 王红梅;李勇智;张静;马正明;马天飞;黄良标;易镇芳;;纳米贵金属催化剂制备的研究进展[J];工业催化;2009年06期
相关会议论文 前2条
1 金伟;张莹;周超;牟颖;;表面等离子体子共振成像技术及其应用[A];中国仪器仪表学会医疗仪器分会第四次全国会员代表大会暨2009年学术年会论文集[C];2009年
2 平婧;柳建设;;电化学核酸适配体传感器及在环境监测方面的应用[A];上海市化学化工学会2013年度学术年会论文集[C];2013年
相关博士学位论文 前10条
1 李心;纳米金颗粒在生物光学传感及成像中的一些应用研究[D];浙江大学;2010年
2 陈伶利;生物功能化粒子/核酸探针技术快速检测病原菌及ATP的研究[D];湖南师范大学;2010年
3 刘钰;基于消失场激发的表面等离子体场增强拉曼散射的研究[D];吉林大学;2011年
4 唐彬;各向异性银纳米粒子的可控制备、表征、分析与应用[D];吉林大学;2011年
5 陈晓璐;聚合物多孔膜辅助构筑有序微结构[D];吉林大学;2011年
6 Damra Elhaj Mustafa Abbass;金纳米的制备、性能、标记和催化应用研究[D];华中师范大学;2011年
7 蒲颖;高胰岛素处理相关核酸适体的筛选及基于核酸适体技术的胰岛素检测[D];中南大学;2011年
8 侯岩雪;低维银纳米结构的合成和表面等离激元性质的研究[D];燕山大学;2012年
9 陈凯敏;功能性纳米粒子的制备及其与蛋白质的相互作用研究[D];华东理工大学;2011年
10 张丹慧;基于银纳米材料的制备及性能研究[D];南京理工大学;2011年
相关硕士学位论文 前10条
1 崔静;新型DNA酶比色纳米生物传感器的构建及其应用研究[D];华东师范大学;2011年
2 刘改宁;自组装银岛膜对若丹明6G表面增强荧光效应研究[D];陕西师范大学;2011年
3 吴馨洲;各向异性贵金属纳米材料的合成及性质表征[D];济南大学;2011年
4 李志刚;近红外量子点对舌鳞癌Tca8113和鳞癌U14细胞增殖、凋亡、成瘤及转移能力影响的体内外研究[D];重庆医科大学;2011年
5 王丽娜;纳米金催化剂的制备、表征及其催化性能的研究[D];郑州大学;2011年
6 鲁逸林;基于光谱研究生物功能化的纳米材料[D];安徽大学;2011年
7 高晓艳;纳米二氧化钛和量子点对海马突触可塑性及空间记忆的影响[D];中国科学技术大学;2011年
8 李红臣;金纳米棒的生长和光学性质[D];南京航空航天大学;2011年
9 黄鑫;多功能聚合物配体制备荧光纳米金颗粒及其生物应用[D];华中科技大学;2011年
10 高杰;纳米金合成、表面修饰及生物应用[D];上海交通大学;2011年
,本文编号:2506564
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2506564.html