生物纳米材料的自组装及其相互作用的AFM研究
[Abstract]:In recent years, the manufacture of new nano-materials by means of self-assembly of molecules has caused extensive attention and research. self-assembly refers to the process of assembling the molecules into an ordered structure spontaneously under the condition that the molecules are not guided by external factors, the nano material generated by the self-assembly technology has the characteristics of "spontaneous", no manual intervention is needed during the self-assembly process, The resulting self-assembled material reduces the interference of human factors and has the best combined structure. The self-assembly technology is one of a few feasible methods to construct the nano-structure, and the self-assembly has great help in the fields of manufacturing and microelectronics. In particular, the nanostructure of many of the biological molecules in the natural world is derived from self-assembly, such as the double-helix structure of the DNA, the three-stage four-stage structure of the protein, and the like, and is formed by self-assembly by a small construction unit. therefore, the self-assembly process of the self-assembled biological nano-material is designed by imitating the self-assembly process in the life system, or from the self-assembly process in the life system, And has great potential application value in the fields of gene and drug carrier and the like. The AFM is a widely used surface morphology characterization tool, which mainly uses the intermolecular force between the probe and the surface of the sample to detect the fluctuation of the surface of the sample, that is, the shape information of the surface of the sample. The requirement of AFM to the sample is relatively simple, and the sample can be characterized in the gas-phase and liquid-phase environment, so that it becomes an important means of characterization in the field of biological nano-materials. In this paper, the self-assembly of several biological materials with important application value in the field of biological medicine, especially the tissue engineering, gene and drug carrier, is studied by AFM, and the effect of different conditions on the self-assembled nano-structure is explored. The biological materials mainly comprise three cationic polypeptides, namely polylysine, polyarginine, polyhistidine, and the like, as well as three polysaccharides, namely chitosan, xanthan gum, gellan gum and the like, besides the self-assembly of the materials, The interaction between their self-assembled nanostructures was also studied. Specifically, the work mainly includes the following aspects:1. The structure of the self-assembled nano-material of polylysine, polyarginine and polyhistidine is adjusted by the culture time. The three cationic polypeptides are used in the fields of antibacterial agent, gene and drug carrier, biological mineralization and the like due to the positive charge group on the molecular chain of the three cationic polypeptides. It was found in the study that the self-assembled nanostructures of the three cationic polypeptides were subjected to the morphology transformation process of unstable aggregates, nano-fiber and nano-particles, and the like in different culture times. Thus, by controlling the culture time, different nanostructures of the three polypeptides can be obtained. this provides the basis for the better utilization of the self-assembled nano-materials of the three cationic polypeptides as the antibacterial agent and the drug carrier, The self-assembled net structure and the rod-like structure of the xanthan gum on the mica surface and the uniform network structure of the gel sugar are obtained. the chitosan or the cationic polypeptide under the acidic condition is dripped on the mesh and the rod-shaped xanthan gum, so that a plurality of small fibers can be generated around the xanthan gum nano structure, and the secondary structure of the xanthan gum is opened on the surface of the mica through the statistical analysis, And the electrostatic interaction between the positively charged chitosan or the cationic polypeptide and the negatively charged xanthan gum is the primary driving force of the dehelix. This finding is of potential significance for the treatment of some amyloid-induced diseases, such as Alzheimer's disease, and studies the self-assembled nano-morphology of xanthan gum under different conditions of the surface of the denture resin. This part provides a foundation for the study of the role of the nano-structure of xanthan gum in the protection of teeth.
【学位授予单位】:河南大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TB383.1
【相似文献】
相关期刊论文 前10条
1 姜雄平,许丹科,刘志红,马立人;金表面自组装化学发光免疫传感器[J];分析化学;2000年12期
2 蒲利春,崔旭梅;自组装技术及其影响因素分析[J];化工新型材料;2004年10期
3 许小丁;陈昌盛;陈荆晓;张先正;卓仁禧;;多肽分子自组装[J];中国科学:化学;2011年02期
4 胡苹;孙向英;柯培林;;双荧光自组装多层膜的构建及其性能[J];华侨大学学报(自然科学版);2011年03期
5 吴迪,吴健;金—硫键自组装生物分子膜[J];化学通报;2004年02期
6 陈鹭剑;王民权;钱国栋;崔元靖;王智宇;;逐层自组装技术制备二阶非线性光学薄膜的研究进展[J];材料导报;2004年04期
7 江浪,黄桂芳,李洪祥,李小凡,胡文平,刘云圻,朱道本;自组装分子电子器件[J];化学进展;2005年01期
8 陈慧文,容敏智,章明利;分子与纳米自组装材料的研究进展[J];材料导报;2002年08期
9 庄小东;陈_g;刘莹;蔡良珍;林楹;;自组装有机纳米功能材料[J];化学进展;2007年11期
10 吕德水,林汉枫,李扬眉,徐立恒,林贤福;LBL自组装技术及自组装生物功能膜结构[J];功能高分子学报;2001年04期
相关会议论文 前10条
1 魏益海;倪筱玲;刘勇洲;朱岩;何小振;彭正合;;自组装功能膜——在分子水平上进行处理的技术[A];第三届中国功能材料及其应用学术会议论文集[C];1998年
2 周峰;马勇;刘全;徐庆锋;路建美;;基于自组装技术的储存器件的制备以及性能研究[A];中国化学会第29届学术年会摘要集——第17分会:光电功能器件[C];2014年
3 潘开林;;基于表面张力作用的MEMS自组装技术[A];2004全国光学与光电子学学术研讨会、2005全国光学与光电子学学术研讨会、广西光学学会成立20周年年会论文集[C];2005年
4 胡建强;张勇;任斌;杨志林;田中群;;表面增强拉曼光谱研究自组装形状可控的新型金纳米材料[A];第十二届全国分子光谱学学术会议论文集[C];2002年
5 马兰馨;石峰;;超重力条件下交替层状自组装制备聚合物多层膜[A];2011年全国高分子学术论文报告会论文摘要集[C];2011年
6 蒋亚东;王涛;吴志明;黄春华;李丹;;聚苯胺自组装复合膜及敏感特性研究[A];第四届中国功能材料及其应用学术会议论文集[C];2001年
7 张召;朱晓丽;姜绪宝;孔祥正;;液滴模板法微球自组装制备P(TMPTA-St)胶体组装体[A];2011年全国高分子学术论文报告会论文摘要集[C];2011年
8 陆学民;肖素芳;路庆华;;离子自组装双功能超分子:可控润湿性及液晶取向[A];2009年全国高分子学术论文报告会论文摘要集(下册)[C];2009年
9 肖守军;;DNA纳米自组装技术[A];纳米材料和技术应用进展——全国第三届纳米材料和技术应用会议论文集(下卷)[C];2003年
10 刘爱骅;;丝状病毒-纳米材料自组装膜的构建及其在生物传感上的应用[A];中国化学会第28届学术年会第15分会场摘要集[C];2012年
相关重要报纸文章 前5条
1 本报记者 李宏乾;自组装技术:现代化学材料新星[N];中国化工报;2002年
2 记者 常丽君;研究人员发现自组装DNA链的最佳长度[N];科技日报;2010年
3 本报记者唐茵;“精准”化:为我所需创造新物质[N];中国化工报;2011年
4 ;自组装高分子微胶囊研究获重要进展[N];中国高新技术产业导报;2003年
5 武炳明;原位可控自组装技术制备出微米炭管[N];中国化工报;2006年
相关博士学位论文 前10条
1 刘娅灵;弗林酶靶向的新型肿瘤PET探针的制备及性能研究[D];江南大学;2015年
2 董原辰;框架诱导自组装体系的构建[D];清华大学;2015年
3 张舟;聚合物纳米流体的自组装及构象行为研究[D];吉林大学;2012年
4 陈颖;基于自组装和目标物循环信号放大的新型电化学生物传感器研究[D];西南大学;2015年
5 程礼盛;聚合物及其纳米复合材料自组装的机理与应用研究[D];北京化工大学;2011年
6 李辉;木素自组装多层膜的制备及其用于材料表面功能化修饰的研究[D];华南理工大学;2012年
7 曹永智;嵌段共聚物薄膜自组装有序纳米微结构的研究[D];哈尔滨工业大学;2006年
8 吕正检;基于计算机模拟、自组装和力谱技术的蛋白质分子间相互作用研究[D];重庆大学;2010年
9 肖素芳;离子自组装制备光敏功能超分子材料[D];上海交通大学;2009年
10 马宇飞;稀土配合物纳米复合材料及多肽自组装纳米材料的合成及性质研究[D];兰州大学;2012年
相关硕士学位论文 前10条
1 单玉琴;多巴胺衍生物自组装单分子层的制备与纳米图案化[D];苏州大学;2015年
2 吴振维;化学驱动阴阳型聚合物微马达的动态自组装研究[D];哈尔滨工业大学;2015年
3 门永红;可控蒸发自组装及其高分子刷功能化的研究[D];宁波大学;2015年
4 罗彩君;超重力条件下交替层状自组装多层膜的研究[D];北京化工大学;2015年
5 冯汲;硅油表面活性剂导向合成多级结构孔性材料[D];上海交通大学;2013年
6 赵杰;NCC基油墨光学防伪特性研究[D];天津科技大学;2013年
7 严金茂;辉光等离子体辅助多肽自组装及其贵金属复合材料制备研究[D];天津大学;2014年
8 董莹;新型核酸自组装纳米探针的构建及其在生物传感和成像分析中的应用[D];青岛科技大学;2015年
9 张春光;单分散聚合物微球的制备及其原位自组装[D];济南大学;2015年
10 林燕琴;基于聚联乙炔(PDA)自组装仿生囊泡技术的生物传感器的构建及应用研究[D];福州大学;2013年
,本文编号:2511631
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2511631.html