当前位置:主页 > 科技论文 > 材料论文 >

功能化石墨烯-碳纳米管协同强韧化HDPE纳米复合材料的制备和性能

发布时间:2019-08-05 13:31
【摘要】:使用L-天门冬氨酸连接氧化石墨烯和酸化多壁碳纳米管(WMCNT-COOH)合成杂化材料LGC,然后用纳米填料LGC填充马来酸酐接枝高密度聚乙烯(HDPE-g-MAH),用熔融共混法制备了LGC/HDPE-g-MAH纳米复合材料。对LGC杂化填料和LGC/HDPE-g-MAH纳米复合材料进行了红外分析(FTIR)、拉曼光谱分析(Raman)、X射线衍射分析(XRD)、扫描电子显微镜分析(SEM)、示差扫描量热仪分析(DSC)、热失重分析(TGA)、动态热机械分析(DMA)和力学性能测试,研究了LGC含量对LGC/HDPE-g-MAH纳米复合材料性能的影响。结果表明:L-天门冬氨连接了GO和WMCNT-COOH,三者通过酰胺键连接在一起形成LGC杂化材料。LGC杂化材料内部官能团(氨基或羧基等)与聚合物基体中的羧基发生相互作用,改善了基体与填料之间的界面。根据DMA分析,损耗因子的变化证实了LGC与基体分子链之间强烈的相互作用。热学分析结果表明:纳米复合材料的结晶温度、熔融温度和热稳定性能都提高了。力学分析表明:随着LGC含量的增加,复合材料的拉伸强度和冲击强度呈现出先增大后降低的趋势;当LGC含量为0.5%和0.75%(质量分数)时,复合材料的冲击强度和拉伸强度分别比HDPE-g-MAH提高了95.9%和62.4%。
[Abstract]:L-aspartic acid was used to connect the graphene and the acidified multi-wall carbon nanotubes (WMCNT-COOH) to synthesize the hybrid material LGC, then the maleic acid and the high-density polyethylene (HDPE-g-MAH) was filled with the nano-filler LGC, and the LGC/ HDPE-g-MAH nanocomposite was prepared by the melt blending method. The infrared analysis (FTIR), Raman spectroscopy (Raman), X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were carried out on the LGC hybrid filler and the LGC/ HDPE-g-MAH nanocomposite. The effect of LGC content on the properties of LGC/ HDPE-g-MAH nanocomposite was studied by dynamic thermal mechanical analysis (DMA) and mechanical property test. The results show that L-aspartic acid is linked to GO and WMCNT-COOH, and the three are linked together through the amine bond to form the LGC hybrid material. The internal functional group (amino group or base group, etc.) of the LGC hybrid material interacts with the base in the polymer matrix to improve the interface between the matrix and the filler. According to the DMA analysis, the change of the loss factor confirms the strong interaction between the LGC and the matrix molecular chain. The results of thermal analysis show that the crystallization temperature, melting temperature and thermal stability of the nanocomposite are improved. The mechanical analysis shows that with the increase of the content of LGC, the tensile strength and impact strength of the composites show a tendency to decrease. When the content of LGC is 0.5% and 0.75% (mass fraction), the impact strength and tensile strength of the composite are 95.9% and 62.4% higher than that of HDPE-g-MAH, respectively.
【作者单位】: 西华大学材料科学与工程学院;四川大学高分子科学与工程学院;
【分类号】:TQ325.1+4

【相似文献】

相关会议论文 前10条

1 肖红梅;杨洋;李元庆;郑斌;付绍云;;功能纳米复合材料研究进展[A];第十五届全国复合材料学术会议论文集(上册)[C];2008年

2 葛岭梅;周安宁;李天良;曲建林;;矿物纳米复合材料的研究进展[A];新世纪 新机遇 新挑战——知识创新和高新技术产业发展(上册)[C];2001年

3 马永梅;;塑料/膨润土纳米复合材料市场应用[A];2003年中国纳微粉体制备与技术应用研讨会论文集[C];2003年

4 陈洁;徐晓楠;杨玲;;纳米复合材料的阻燃研究[A];中国化学会第二十五届学术年会论文摘要集(下册)[C];2006年

5 赵海波;徐波;王俊胜;王玉忠;;主链含磷阻燃共聚酯/硫酸钡纳米复合材料的研究[A];2009年中国阻燃学术年会论文集[C];2009年

6 张忠;;多级次多尺度纳米复合材料力学性能研究[A];2010年第四届微纳米海峡两岸科技暨纳微米系统与加工制备中的力学问题研讨会摘要集[C];2010年

7 卢小泉;;基于纳米复合材料的电化学生物传感器[A];第六届海峡两岸分析化学会议摘要论文集[C];2010年

8 周安宁;杨伏生;曲建林;李天良;葛岭梅;;矿物纳米复合材料研究进展[A];纳米材料和技术应用进展——全国第二届纳米材料和技术应用会议论文集(下卷)[C];2001年

9 上官文峰;;纳米复合材料的构筑及其光催化性能[A];纳微粉体制备与应用进展——2002年纳微粉体制备与技术应用研讨会论文集[C];2002年

10 林鸿福;;加速聚合物/粘土纳米复合材料的产业化进程[A];浙江省科协学术研究报告——浙江优势非金属矿产资源的开发利用研究论文集[C];2004年

相关重要报纸文章 前10条

1 宋玉春;纳米复合材料能否风行?[N];中国石化报;2005年

2 李闻芝;纳米复合材料产业化研讨会将开[N];中国化工报;2004年

3 李伟;汽车用上纳米复合材料部件[N];中国化工报;2004年

4 渤海投资 周延;武汉塑料 突破60日均线压制[N];证券时报;2004年

5 唐伟家 吴汾 李茂彦;尼龙纳米复合材料的开发和市场[N];中国包装报;2008年

6 华凌;纳米复合材料提升自充电池性能[N];中国化工报;2014年

7 塑化;聚合物系纳米复合材料发展前景广阔[N];国际商报;2003年

8 唐伟家 吴汾 李茂彦;尼龙纳米复合材料的开发和包装应用[N];中国包装报;2008年

9 本报记者 王海霞;纳米复合材料将广泛应用到新能源领域[N];中国能源报;2009年

10 刘霞;高效存储氢的纳米复合材料研制成功[N];科技日报;2011年

相关博士学位论文 前10条

1 李念武;锂硫二次电池用碳基含硫正极材料的研究[D];南京航空航天大学;2013年

2 夏雷;尼龙6及其纳米复合材料的热氧稳定性研究[D];浙江大学;2013年

3 杜青青;高效荧光碳点合成及其功能复合材料研究[D];山东大学;2015年

4 刘江涛;四种纳米复合材料的制备及其电化学和电化学传感研究[D];西北大学;2015年

5 李苏原;SnO_2/C纳米复合材料的制备及其储锂性能研究[D];兰州大学;2015年

6 郭改萍;环境友好大豆蛋白质材料改性研究[D];北京化工大学;2015年

7 孙逊;新型介孔无机物/聚苯胺纳米复合材料的制备及其性能研究[D];兰州大学;2012年

8 卜小海;螺旋聚炔基纳米复合材料的制备及其红外辐射性能研究[D];东南大学;2015年

9 王洪宾;LiFePO_4/C纳米复合材料的设计、合成及其储锂性能研究[D];吉林大学;2015年

10 杨慧;基于溶剂浇铸法和沉积法改性的聚对苯二甲酸乙二醇酯(PET)[D];上海大学;2015年

相关硕士学位论文 前10条

1 易华玉;纳米复合材料和酶放大构建凝血酶电化学适体传感器的研究[D];西南大学;2015年

2 于丹;BaTiO_3基介电陶瓷和纳米复合材料的制备及性能研究[D];浙江大学;2015年

3 王超;PVC纳米复合材料的制备及其性能研究[D];河北大学;2015年

4 谭丽莎;功能化磁性纳米复合材料的制备及其对Pb(Ⅱ)和Cr(Ⅵ)的选择性去除研究[D];浙江大学;2015年

5 杜青;锆基纳米复合材料深度净化水体中的微量重金属[D];燕山大学;2015年

6 王正奇;硫化锌纳米复合材料的制备、表征及性质研究[D];陕西科技大学;2015年

7 明洪涛;TiO_2/Au核壳纳米复合材料的制备及其光学性质研究[D];东北师范大学;2015年

8 赵元旭;多壁碳纳米管/聚碳酸酯复合材料的制备与性能研究[D];郑州大学;2015年

9 孙艺铭;金/碳纳米复合材料生物传感器检测多药耐药基因MDR1及其表达蛋白ABCB1的实验研究[D];福建医科大学;2015年

10 陈亚;基于碳纳米复合材料及β-环糊精对手性小分子识别研究[D];西南大学;2015年



本文编号:2523148

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2523148.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户3afe9***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com