锆/铁基金属氧化物纳米材料的制备及其深度去除水中砷的性能研究
发布时间:2021-03-13 02:49
地表水和地下水中的天然砷(As(Ⅲ,Ⅴ))污染,由于具有致癌性和高毒性,已成为严重的环境和健康问题,威胁着全球数百万人的生命。即使在低浓度下,砷也具有较高的毒性和致癌性,因此,世界卫生组织(WHO)将饮用水安全标准中砷的最大允许值由50ppb调至10 ppb。为了有效地去除被污染水体中砷,阻止各种疾病的发生,使人们生活更加健康,研究人员已经探索出了各种吸附剂去除水中的砷。纳米材料相对于传统材料具有很多优势,但开发出对As(Ⅲ)或As(Ⅴ)具有良好吸附能力、优异选择性、良好的再生能力和实际应用的新型纳米吸附剂,仍然是一项具有挑战性的任务。本文介绍了水热法合成四种不同的新型纳米材料,分别为氧化锆纳米片、介孔氧化锆纳米结构(MZN)、锌铁氧体纳米团簇(ZFNC)和磁性生物质复合材料(CMOPC)用于去除水中砷,研究了初始pH值、As(Ⅲ)/As(V)初始浓度、接触时间和共存离子对砷去除效率的影响,并研究了吸附机理和吸附材料净化实际砷污染水的效能。(1)采用Fe3O4磁性纳米颗粒修饰桔皮煅烧制备成一种新型复合材料(CMOPC),通过同时氧化和吸附方法去除水中的As(Ⅲ)。吸附实验结果表明,CM...
【文章来源】:中国科学技术大学安徽省 211工程院校 985工程院校
【文章页数】:190 页
【学位级别】:博士
【文章目录】:
Acknowledgements
Abbreviations
Abstract
Abstract(中文)
Chapter 1 General Introduction
1.1. Background
1.2. Objectives of the study
1.3. Thesis framework
Reference
Chapter 2 Literature Review
2.1. Arsenic and its species
2.2. Geochemistry of arsenic
2.3. Arsenic toxicity
2.4. Sources and mobilization of arsenic
2.5. Arsenic remediation technologies
2.5.1. Precipitation
2.5.2. Ion exchange
2.5.3. Oxidation
2.5.4. Adsorption
2.5.5. Other remediation processes
2.6. Adsorbents for arsenic remediation
2.6.1. Amendment of adsorbent by iron (Fe) and selective calcination
2.6.2. Nano-sized metal oxide adsorbents
2.6.3. Mesoporous/macroporous adsorbents
References
Chapter 3 Facile synthesis of novel calcined magnetic orange peel composites for efficientremoval of arsenite through simultaneous oxidation and adsorption
3.1. Graphical abstract
3.2. Introduction
3.3. Experimental section
3.3.1. Materials
3.3.2. Synthesis of adsorbents
3.3.3. Batch adsorption tests
3.3.4. Characterization
3.4. Results and discussion
3.4.1. Preliminary batch adsorption experiment
3.4.2. Material Characterization
3.4.3. Effect of initial pH
3.4.4. Adsorption kinetics
3.4.5. Adsorption isotherms
3.4.6. Effect of co-existing ions
3.4.7. Arsenic adsorption mechanism
3.4.8. Desorption and regeneration
3.4.9. Practical implication
3.4.10. Effect of chemical composition variation on A(Ⅲ) removal
3.5. Conclusions
References
2 nanosheets as novel adsorbents for fast and efficientremoval of As(Ⅲ) from aqueous solutions">Chapter 4 Synthesis of ultra-large ZrO2 nanosheets as novel adsorbents for fast and efficientremoval of As(Ⅲ) from aqueous solutions
4.1. Graphical abstract
4.2. Introduction
4.3. Experimental
4.3.1. Materials and chemicals
4.3.2. Fabrication of ZrO2 nanosheets
4.3.3. Batch adsorption experiments
4.3.4. Characterization
4.4. Results and discussion
4.4.1. Characterization of adsorbent
4.4.2. Adsorption kinetics
4.4.3. Adsorption isotherms
4.4.4. Effect of common co-existing ions
4.4.5. Effect of initial pH
4.4.6. Adsorption mechanism
4.4.7. Practical application
4.5. Conclusions
References
Chapter 5 Mesoporous Zirconia Nanostructures (MZN) for Adsorption of As(Ⅲ) and As(Ⅴ)from Aqueous Solutions
5.1. Graphical abstract
5.2. Introduction
5.3. Materials and methods
5.3.1. Chemicals and materials
5.3.2. Synthesis of mesoporous zirconia nanostructures
5.3.3. Characterization
5.3.4. Batch adsorption tests
5.4. Results and discussion
5.4.1. Characterization
5.4.2. Effect of initial pH
5.4.3. Adsorption kinetics
5.4.4. Adsorption isotherms
5.4.5. Adsorption thermodynamic parameters analysis
5.4.6. Effect of common co-existing ions
5.4.7. Arsenic adsorption mechanism
5.4.8. Practical application
5.4.9. Regeneration and reuse
5.5. Conclusions
References
Chapter 6 Zinc Ferrite Nano-Clusters (ZFNC): Excellent Adsorbents of Highly Mobile andToxic Arsenite (As(Ⅲ)) from Aqueous Solutions
6.1. Graphical abstract
6.2. Introduction
6.3. Materials and method
6.3.1. Starting materials
6.3.2. Synthesis of ZFNC
6.3.3. Characterization
6.3.4. Batch adsorption tests
6.4. Results and discussion
6.4.1. Characterization of the ZFNC
6.4.1.1. Structural and magnetic analysis
6.4.1.2. Morphological and compositional analysis
6.4.2. Effect of pH on adsorption capacity
6.4.3. Adsorption kinetics
6.4.4. Adsorption isotherms
6.4.5. Thermodynamic analysis
6.4.6. Effect of common co-existing ions on As(Ⅲ) adsorption
6.4.7. Adsorption mechanism
6.4.8. Regeneration study
6.4.9. Environmental significance
6.5. Conclusions
References
Chapter 7 Conclusions and future perspectives
7.1. Major findings
7.2. Innovation
7.3. Challenges and future perspectives
Publications
本文编号:3079443
【文章来源】:中国科学技术大学安徽省 211工程院校 985工程院校
【文章页数】:190 页
【学位级别】:博士
【文章目录】:
Acknowledgements
Abbreviations
Abstract
Abstract(中文)
Chapter 1 General Introduction
1.1. Background
1.2. Objectives of the study
1.3. Thesis framework
Reference
Chapter 2 Literature Review
2.1. Arsenic and its species
2.2. Geochemistry of arsenic
2.3. Arsenic toxicity
2.4. Sources and mobilization of arsenic
2.5. Arsenic remediation technologies
2.5.1. Precipitation
2.5.2. Ion exchange
2.5.3. Oxidation
2.5.4. Adsorption
2.5.5. Other remediation processes
2.6. Adsorbents for arsenic remediation
2.6.1. Amendment of adsorbent by iron (Fe) and selective calcination
2.6.2. Nano-sized metal oxide adsorbents
2.6.3. Mesoporous/macroporous adsorbents
References
Chapter 3 Facile synthesis of novel calcined magnetic orange peel composites for efficientremoval of arsenite through simultaneous oxidation and adsorption
3.1. Graphical abstract
3.2. Introduction
3.3. Experimental section
3.3.1. Materials
3.3.2. Synthesis of adsorbents
3.3.3. Batch adsorption tests
3.3.4. Characterization
3.4. Results and discussion
3.4.1. Preliminary batch adsorption experiment
3.4.2. Material Characterization
3.4.3. Effect of initial pH
3.4.4. Adsorption kinetics
3.4.5. Adsorption isotherms
3.4.6. Effect of co-existing ions
3.4.7. Arsenic adsorption mechanism
3.4.8. Desorption and regeneration
3.4.9. Practical implication
3.4.10. Effect of chemical composition variation on A(Ⅲ) removal
3.5. Conclusions
References
2 nanosheets as novel adsorbents for fast and efficientremoval of As(Ⅲ) from aqueous solutions">Chapter 4 Synthesis of ultra-large ZrO2 nanosheets as novel adsorbents for fast and efficientremoval of As(Ⅲ) from aqueous solutions
4.1. Graphical abstract
4.2. Introduction
4.3. Experimental
4.3.1. Materials and chemicals
4.3.2. Fabrication of ZrO2 nanosheets
4.3.3. Batch adsorption experiments
4.3.4. Characterization
4.4. Results and discussion
4.4.1. Characterization of adsorbent
4.4.2. Adsorption kinetics
4.4.3. Adsorption isotherms
4.4.4. Effect of common co-existing ions
4.4.5. Effect of initial pH
4.4.6. Adsorption mechanism
4.4.7. Practical application
4.5. Conclusions
References
Chapter 5 Mesoporous Zirconia Nanostructures (MZN) for Adsorption of As(Ⅲ) and As(Ⅴ)from Aqueous Solutions
5.1. Graphical abstract
5.2. Introduction
5.3. Materials and methods
5.3.1. Chemicals and materials
5.3.2. Synthesis of mesoporous zirconia nanostructures
5.3.3. Characterization
5.3.4. Batch adsorption tests
5.4. Results and discussion
5.4.1. Characterization
5.4.2. Effect of initial pH
5.4.3. Adsorption kinetics
5.4.4. Adsorption isotherms
5.4.5. Adsorption thermodynamic parameters analysis
5.4.6. Effect of common co-existing ions
5.4.7. Arsenic adsorption mechanism
5.4.8. Practical application
5.4.9. Regeneration and reuse
5.5. Conclusions
References
Chapter 6 Zinc Ferrite Nano-Clusters (ZFNC): Excellent Adsorbents of Highly Mobile andToxic Arsenite (As(Ⅲ)) from Aqueous Solutions
6.1. Graphical abstract
6.2. Introduction
6.3. Materials and method
6.3.1. Starting materials
6.3.2. Synthesis of ZFNC
6.3.3. Characterization
6.3.4. Batch adsorption tests
6.4. Results and discussion
6.4.1. Characterization of the ZFNC
6.4.1.1. Structural and magnetic analysis
6.4.1.2. Morphological and compositional analysis
6.4.2. Effect of pH on adsorption capacity
6.4.3. Adsorption kinetics
6.4.4. Adsorption isotherms
6.4.5. Thermodynamic analysis
6.4.6. Effect of common co-existing ions on As(Ⅲ) adsorption
6.4.7. Adsorption mechanism
6.4.8. Regeneration study
6.4.9. Environmental significance
6.5. Conclusions
References
Chapter 7 Conclusions and future perspectives
7.1. Major findings
7.2. Innovation
7.3. Challenges and future perspectives
Publications
本文编号:3079443
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/3079443.html