基于Al-SiO 2 和Al-SiO 2 -C制备的铝基复合材料微观组织与力学性能
发布时间:2021-04-23 10:03
本文以Al粉,Si O2粉和C粉为原料,制备Al2O3,Si C和Si为增强相的铝基复合材料。同时研究了Al-Si O2和Al-Si O2-C两种体系,采用球磨和反应热压法制备铝基复合材料。用低能球磨原料粉,然后在真空热压炉中烧结以合成新的增强相。对于Al-Si O2体系,分别用低能球磨和反应热压法合成了增强相体积分数为10,20和30%的复合材料。研究了增强相体积分数对微观组织和力学性能的影响。当体积分数为10vol.%和20vol.%时,微观组织观察表明原位反应生成的Al2O3和Si均匀分布在铝基体上,并且增强相尺寸细小,小于2μm。而当增强相的体积分数为30vol.%时,可以观察到Al2O3尺寸达到2μm和块状初晶硅((130μm)。利用DTA研究Al-SiO2和Al-Si O2-C两种体系的反应机制。加热到900oC保温1小时,足以使Al和Al O2发生完全反应,生成Al2O3和Si。然而,将C加入到AlSi O2体系中,反应产物除了Al2O3和Si,还有Al4C3和Si C生成。原位反应生成的Al2O3,Si C,Al4C3和Si均匀分布于铝基体上,尺寸...
【文章来源】:哈尔滨工业大学黑龙江省 211工程院校 985工程院校
【文章页数】:136 页
【学位级别】:博士
【文章目录】:
摘要
ABSTRACT
CHAPTER 1 INTRODUCTION
1.1 BACKGROUND AND SIGNIFICANCE OF SUBJECT
1.2 METAL MATRIX COMPOSITES OVERVIEW
1.2.1 Classification of MMCs
1.2.2 Particle reinforced AMCs
1.2.3 Applications of particle reinforced AMCs
1.2.4 Advantages and limitations of particle reinforced AMCs
1.2.5 Notion of Hybrid in particle reinforced AMCs
1.3 UNWANTED CHEMICAL REACTIONS IN AMCS
1.4 MAIN FABRICATION METHODS FOR MMC
1.4.1 In situ techniques
2O3, SiC AND Si"> 1.5 MECHANICAL PROPERTIES OF AMCS REINFORCED WITH Al2O3, SiC AND Si
1.6 PURE ALUMINUM AND Al-Si ALLOYS
1.7 THEORY OF WEAR
1.7.1 Abrasive wear
1.7.2 Adhesive wear
1.7.3 Erosive wear
1.7.4 Surface fatigue wear
1.7.5 Corrosive wear
1.8 PARAMETERS INFLUENCES THE FRICTION AND WEAR MECHANISMS
1.9 WEAR BEHAVIOR OF AMCS
1.10 LAYOUT OF THESIS
CHAPTER 2 MATERIAL SYSTEM AND EXPERIMENTAL DETAILS
2.1 RAW MATERIALS
2.2 PROCESSING METHODS
2.2.1 Ball milling
2.2.2 Reactive hot pressing
2.2.3 Hot extrusion process
2.3 MICROSTRUCTURAL CHARACTERIZATION
2.3.1 Differential thermal analysis
2.3.2 Microstructural analysis
2.3.3 X-ray diffraction
2.3.4 Atomic Force Microscopy
2.4 MECHANICAL TESTING
2.4.1 Brinell hardness
2.4.2 Room temperature tensile tests
2.4.3 Dry sliding wear tests
2.4.4 Relative density measurement
4C3 PREVENTION">CHAPTER 3 REACTION MECHANISM, PROCESS OPTIMIZATION AND AL4C3 PREVENTION
3.1 INTRODUCTION
3.2 OPTIMIZATION OF BALL MILLING PARAMETERS
3.3 THERMODYNAMIC CONSIDERATIONS AND DIFFERENTIAL THERMAL ANALYSIS (DTA)
3.3.1 Thermodynamic analysis of the Al-Si O2 system
3.3.2 Thermodynamic analysis of the Al-Si O2-C system
3.3.3 Reaction Energy activation
3.4 OPTIMIZATION OF SINTERING PARAMETERS
3.4.1 XRD and microstructures in Al-Si O2 system
2-Al-C system"> 3.4.2 XRD and Microstructures in SiO2-Al-C system
3.5 EFFECT OF THE SYNTHESIS TEMPERATURE IN PREVENTING AL4C3
3.6 SUMMARY
2O3-Si)/Al AND (Al2O3-SiC-Si)/Al MMCS">CHAPTER 4 FABRICATION OF (Al2O3-Si)/Al AND (Al2O3-SiC-Si)/Al MMCS
4.1 INTRODUCTION
4.2 FABRICATION TECHNOLOGY
4.2.1 XRD and micro structural observations
4.2.2 Effect of pressure
2O3-SI)/AL MMCS"> 4.3 EFFECT OF REINFORCEMENT VOLUME FRACTION ON MICROSTRUCTURE OF (Al2O3-SI)/AL MMCS
4C3"> 4.4 EFFECT OF VARYING SiO2/C/AL MOLAR RATIO IN PREVENTING Al4C3
4.5 HOT EXTRUSION OF (Al2O3-Si)/AL MMCS
4.5.1 Fabrication technology
2 O3-Si)/Al MMCs"> 4.5.2 Microstructural analysis of as extruded (Al2O3-Si)/Al MMCs
4.6 SUMMARY
CHAPTER 5 MECHANICAL CHARACTERIZATION OF IN SITU AL BASED COMPOSITES
5.1 INTRODUCTION
2 SYSTEM"> 5.2 MECHANICAL PROPERTIES OF AS SINTERED COMPOSITES FABRICATED IN Al-SiO2 SYSTEM
5.2.1 Brinell hardness of as sintered composites
5.2.2 Room tensile properties of as sintered composites
5.2.3 Fracture surfaces of as sintered composites
2-C SYSTEM"> 5.3 MECHANICAL PROPERTIES OF AS SINTERED COMPOSITES FABRICATED IN AL-SiO2-C SYSTEM
5.3.1 Brinell hardness of as sintered composites
2-C system"> 5.3.2 Room tensile properties of as sintered composites fabricated in Al-SiO2-C system
5.3.3 Fracture surfaces of as sintered composites
2 SYSTEM"> 5.4 MECHANICAL PROPERTIES OF AS EXTRUDED COMPOSITES FABRICATED IN AL-SiO2 SYSTEM
5.4.1 Brinell hardness of as extruded composites
5.4.2 Room tensile properties of as extruded composites
5.4.3 Fracture surfaces of as extruded composites
5.5 SUMMARY
CHAPTER 6 WEAR CHARACTERISTICS AND FRICTION BEHAVIOR OF AL BASED COMPOSITES
6.1 INTRODUCTION
2O3-SI)/AL COMPOSITES"> 6.2 WEAR CHARACTERISTICS AND FRICTION BEHAVIOR OF (Al2O3-SI)/AL COMPOSITES
2O3-Si)/Al composites"> 6.2.1 Wear characteristics of as sintered (Al2O3-Si)/Al composites
2O3-Si)/Al composites"> 6.2.2 Wear surfaces of as sintered (Al2O3-Si)/Al composites
2O3-Si)/Al composites"> 6.2.3 Surface roughness of as sintered (Al2O3-Si)/Al composites
2O3-Si)/Al composites"> 6.2.4 Friction coefficients of as sintered (Al2O3-Si)/Al composites
O
2-C SYSTEM"> 6.3 WEAR CHARACTERISTICS IN AL-SiO
2-C SYSTEM
6.4 SUMMARY
CONCLUSIONS
SCOPE FOR FUTURE WORK
INNOVATIONS
REFERENCES
PUBLICATIONS DURING PHD
ACKNOWLEDGEMENTS
CURRICULUM VITAE
【参考文献】:
期刊论文
[1]Effect of Si Content on Dynamic Recrystallization of Al-Si-Mg Alloys During Hot Extrusion[J]. Yuna Wu,Hengcheng Liao,Jian Yang,Kexin Zhou. Journal of Materials Science & Technology. 2014(12)
[2]SiCp及Al2O3w增强铸态混杂金属基复合材料的疲劳裂纹扩展机理(英文)[J]. AKM Asif IQBAL,Yoshio ARAI,Wakako ARAKI. Transactions of Nonferrous Metals Society of China. 2014(S1)
[3]搅拌铸造SiC颗粒增强铝基复合材料的组织与磨损性能(英文)[J]. Ali MAZAHERY,Mohsen Ostad SHABANI. Transactions of Nonferrous Metals Society of China. 2013(07)
[4]Application of ceramic short fiber reinforced Al alloy matrix composite on piston for internal combustion engines[J]. Wu Shenqing and Li Jun (School of Materials Science & Engineering, Southeast University, Jiangsu Key Laboratory for Advanced Metallic Materials, Nanjing 211189, China). China Foundry. 2010(04)
[5]Microstructure and tensile properties of TiB2p/6061Al composites[J]. 姜龙涛,陈国钦,赫晓东,赵敏,修子扬,范瑞君,武高辉. Transactions of Nonferrous Metals Society of China. 2009(S3)
[6]Wear behavior of Al-Si alloy matrix composites reinforced by γ-Al2O3 decomposed from AACH[J]. 付高峰,张景新,刘吉,王肇飞. Transactions of Nonferrous Metals Society of China. 2006(05)
本文编号:3155125
【文章来源】:哈尔滨工业大学黑龙江省 211工程院校 985工程院校
【文章页数】:136 页
【学位级别】:博士
【文章目录】:
摘要
ABSTRACT
CHAPTER 1 INTRODUCTION
1.1 BACKGROUND AND SIGNIFICANCE OF SUBJECT
1.2 METAL MATRIX COMPOSITES OVERVIEW
1.2.1 Classification of MMCs
1.2.2 Particle reinforced AMCs
1.2.3 Applications of particle reinforced AMCs
1.2.4 Advantages and limitations of particle reinforced AMCs
1.2.5 Notion of Hybrid in particle reinforced AMCs
1.3 UNWANTED CHEMICAL REACTIONS IN AMCS
1.4 MAIN FABRICATION METHODS FOR MMC
1.4.1 In situ techniques
2O3, SiC AND Si"> 1.5 MECHANICAL PROPERTIES OF AMCS REINFORCED WITH Al2O3, SiC AND Si
1.6 PURE ALUMINUM AND Al-Si ALLOYS
1.7 THEORY OF WEAR
1.7.1 Abrasive wear
1.7.2 Adhesive wear
1.7.3 Erosive wear
1.7.4 Surface fatigue wear
1.7.5 Corrosive wear
1.8 PARAMETERS INFLUENCES THE FRICTION AND WEAR MECHANISMS
1.9 WEAR BEHAVIOR OF AMCS
1.10 LAYOUT OF THESIS
CHAPTER 2 MATERIAL SYSTEM AND EXPERIMENTAL DETAILS
2.1 RAW MATERIALS
2.2 PROCESSING METHODS
2.2.1 Ball milling
2.2.2 Reactive hot pressing
2.2.3 Hot extrusion process
2.3 MICROSTRUCTURAL CHARACTERIZATION
2.3.1 Differential thermal analysis
2.3.2 Microstructural analysis
2.3.3 X-ray diffraction
2.3.4 Atomic Force Microscopy
2.4 MECHANICAL TESTING
2.4.1 Brinell hardness
2.4.2 Room temperature tensile tests
2.4.3 Dry sliding wear tests
2.4.4 Relative density measurement
4C3 PREVENTION">CHAPTER 3 REACTION MECHANISM, PROCESS OPTIMIZATION AND AL4C3 PREVENTION
3.1 INTRODUCTION
3.2 OPTIMIZATION OF BALL MILLING PARAMETERS
3.3 THERMODYNAMIC CONSIDERATIONS AND DIFFERENTIAL THERMAL ANALYSIS (DTA)
3.3.1 Thermodynamic analysis of the Al-Si O2 system
3.3.2 Thermodynamic analysis of the Al-Si O2-C system
3.3.3 Reaction Energy activation
3.4 OPTIMIZATION OF SINTERING PARAMETERS
3.4.1 XRD and microstructures in Al-Si O2 system
2-Al-C system"> 3.4.2 XRD and Microstructures in SiO2-Al-C system
3.5 EFFECT OF THE SYNTHESIS TEMPERATURE IN PREVENTING AL4C3
3.6 SUMMARY
2O3-Si)/Al AND (Al2O3-SiC-Si)/Al MMCS">CHAPTER 4 FABRICATION OF (Al2O3-Si)/Al AND (Al2O3-SiC-Si)/Al MMCS
4.1 INTRODUCTION
4.2 FABRICATION TECHNOLOGY
4.2.1 XRD and micro structural observations
4.2.2 Effect of pressure
2O3-SI)/AL MMCS"> 4.3 EFFECT OF REINFORCEMENT VOLUME FRACTION ON MICROSTRUCTURE OF (Al2O3-SI)/AL MMCS
4C3"> 4.4 EFFECT OF VARYING SiO2/C/AL MOLAR RATIO IN PREVENTING Al4C3
4.5.1 Fabrication technology
2
4.6 SUMMARY
CHAPTER 5 MECHANICAL CHARACTERIZATION OF IN SITU AL BASED COMPOSITES
5.1 INTRODUCTION
2 SYSTEM"> 5.2 MECHANICAL PROPERTIES OF AS SINTERED COMPOSITES FABRICATED IN Al-SiO2 SYSTEM
5.2.1 Brinell hardness of as sintered composites
5.2.2 Room tensile properties of as sintered composites
5.2.3 Fracture surfaces of as sintered composites
2-C SYSTEM"> 5.3 MECHANICAL PROPERTIES OF AS SINTERED COMPOSITES FABRICATED IN AL-SiO2-C SYSTEM
5.3.1 Brinell hardness of as sintered composites
2-C system"> 5.3.2 Room tensile properties of as sintered composites fabricated in Al-SiO2-C system
5.3.3 Fracture surfaces of as sintered composites
2 SYSTEM"> 5.4 MECHANICAL PROPERTIES OF AS EXTRUDED COMPOSITES FABRICATED IN AL-SiO2 SYSTEM
5.4.1 Brinell hardness of as extruded composites
5.4.2 Room tensile properties of as extruded composites
5.4.3 Fracture surfaces of as extruded composites
5.5 SUMMARY
CHAPTER 6 WEAR CHARACTERISTICS AND FRICTION BEHAVIOR OF AL BASED COMPOSITES
6.1 INTRODUCTION
2O3-SI)/AL COMPOSITES"> 6.2 WEAR CHARACTERISTICS AND FRICTION BEHAVIOR OF (Al2O3-SI)/AL COMPOSITES
2O3-Si)/Al composites"> 6.2.1 Wear characteristics of as sintered (Al2O3-Si)/Al composites
2O3-Si)/Al composites"> 6.2.2 Wear surfaces of as sintered (Al2O3-Si)/Al composites
2O3-Si)/Al composites"> 6.2.3 Surface roughness of as sintered (Al2O3-Si)/Al composites
2O3-Si)/Al composites"> 6.2.4 Friction coefficients of as sintered (Al2O3-Si)/Al composites
O
2-C SYSTEM"> 6.3 WEAR CHARACTERISTICS IN AL-SiO
2-C SYSTEM
6.4 SUMMARY
CONCLUSIONS
SCOPE FOR FUTURE WORK
INNOVATIONS
REFERENCES
PUBLICATIONS DURING PHD
ACKNOWLEDGEMENTS
CURRICULUM VITAE
【参考文献】:
期刊论文
[1]Effect of Si Content on Dynamic Recrystallization of Al-Si-Mg Alloys During Hot Extrusion[J]. Yuna Wu,Hengcheng Liao,Jian Yang,Kexin Zhou. Journal of Materials Science & Technology. 2014(12)
[2]SiCp及Al2O3w增强铸态混杂金属基复合材料的疲劳裂纹扩展机理(英文)[J]. AKM Asif IQBAL,Yoshio ARAI,Wakako ARAKI. Transactions of Nonferrous Metals Society of China. 2014(S1)
[3]搅拌铸造SiC颗粒增强铝基复合材料的组织与磨损性能(英文)[J]. Ali MAZAHERY,Mohsen Ostad SHABANI. Transactions of Nonferrous Metals Society of China. 2013(07)
[4]Application of ceramic short fiber reinforced Al alloy matrix composite on piston for internal combustion engines[J]. Wu Shenqing and Li Jun (School of Materials Science & Engineering, Southeast University, Jiangsu Key Laboratory for Advanced Metallic Materials, Nanjing 211189, China). China Foundry. 2010(04)
[5]Microstructure and tensile properties of TiB2p/6061Al composites[J]. 姜龙涛,陈国钦,赫晓东,赵敏,修子扬,范瑞君,武高辉. Transactions of Nonferrous Metals Society of China. 2009(S3)
[6]Wear behavior of Al-Si alloy matrix composites reinforced by γ-Al2O3 decomposed from AACH[J]. 付高峰,张景新,刘吉,王肇飞. Transactions of Nonferrous Metals Society of China. 2006(05)
本文编号:3155125
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/3155125.html