PIPD纤维表面改性及其复合材料界面性能研究
发布时间:2021-04-23 16:50
PIPD或M5纤维是具有高拉伸强度的纤维材料,具有如能量吸收等优越的性能,可以应用到对重量要求较高的领域。PIPD纤维具有突出的压缩性能,使其在结构方面的应用可扩展到宇航、航海、汽车和制造工业等诸多领域。然而,PIPD纤维光滑而惰性的表面导致纤维与基体的界面粘接作用较弱。因此,研究人员提出大量的表面改性方法克服这一缺点,从而提高复合材料的界面和力学性能。在本项工作中,提出了一种非剧烈条件下在PIPD纤维表面接枝有机/无机纳米材料的方法,在大幅提高界面与力学性能的同时保持了PIPD纤维原有的拉伸强度。将PIPD表面硝酸化处理后引入了多壁碳纳米管,并研究了酸化处理和接枝方法对纤维性能的影响。对在不同浓度、时间、温度下酸化处理的纤维强度作出评价,获得了不损伤纤维的最佳表面处理条件。进一步,接枝多壁碳纳米管增加了纤维与树脂的接触面积和机械啮合,将PIPD/环氧的界面剪切强度从25.13MPa提高到40.63MPa,提高了62%。接枝多壁碳纳米管后的纤维表面能从34.23 mJ/m2提高到52.04 mJ/m2,提高了52%。同时,将拉伸强度的损失控制...
【文章来源】:哈尔滨工业大学黑龙江省 211工程院校 985工程院校
【文章页数】:153 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
Chapter 1 Introduction
1.1 Background, objective and significance of the subject
1.2 Progress in high performance rigid rod fibers
1.2.1 Structure and properties of PBO fiber
1.2.2 Structure and properties of PIPD fiber
1.2.3 The properties of high performance fibers
1.3 The Compressive property of high performance fiber
1.3.1 The compressive behavior of high performance fiber
1.3.2 The intermolecular structure vs compressive property of PIPD fiber
1.4 Progress in surface modification methods of high performance fibers
1.4.1 Surface modification by changing surface chemically
1.4.2 Surface modification by adding new material onto the surface
1.4.3 Other surface modification methods
1.5 Bond Failure Modes
1.5.1 Definition of Failure Modes
1.5.2 Failure Modes mechanisms
1.6 Main research content
Chapter 2 Experimental Materials and Methods
2.1 Experimental materials and instruments
2.1.1 Experimental material
2.1.2 Experimental instruments#.
2.2 Surface modification methods of PIPD fiber
2.2.1 Surface modification of PIPD fiber using Nitric acid
2.2.2 Preparation of PIPD fiber grafted MWCNTs
2.2.3 Preparation of PIPD fiber grafted MXene nanosheets
2.2.4 Preparation of PIPD fiber coated CuO NWs decorated with Ag NPs
2.3 Surface structure and characterization performance of experimentalmaterials
2.3.1 Morphological analysis
2.3.2 Surface composition analysis
2.3.3 Structural analysis
2.3.4 Characterization performance of PIPD fiber
2.3.5 Characterization performance of PIPD/epoxy resin composite
Chapter 3 Surface modification of PIPD fibers by grafting MWCNTs
3.1 Introduction
3.2 Surface morphology of the acid treated PIPD fibers
3.3 Surface roughness of acid treatment PIPD fibers
3.4 X-ray photoelectron microscopy of acid treatment PIPD fibers
3.5 Mechanical properties of acid treated PIPD fibers
3.6 Surface energy and wettability of acid treated PIPD fibers
3.7 Surface composition of MWCNTs
3.7.1 X-ray photoelectron microscopy of MWCNTs
3.7.2 Infrared spectroscopy analysis of MWCNTs
3.7.3 Thermogravimetric analysis (TGA) of MWCNTs
3.8 Surface morphology of PIPD fibers grafted MWCNTs
3.9 Surface composition analysis of PIPD fibers grafted MWCNTs
3.9.1 X-ray photoelectron microscopy of PIPD fibers grafted MWCNTs
3.9.2 Infrared spectroscopy analysis of PIPD fibers grafted MWCNTs
3.10 Mechanical properties of PIPD fibers grafted MWCNTs
3.11 Surface energy of PIPD fibers grafted MWCNTs
3.12 Thermogravimetric analysis of PIPD fibers grafted MWCNTs
3.13 Brief summary
3C2(OH)2 nanosheets onto PIPD fiber">Chapter 4 Surface grafting of Ti3C2(OH)2 nanosheets onto PIPD fiber
4.1 Introduction
4.2 Characterization of MXene nanosheets
4.2.1 Surface morphology of MXene nanosheets
4.2.2 The X-ray diffraction (XRD) of MXene nanosheets
4.2.3 The XPS analysis of MXene nanosheets
3C2(OH)2"> 4.3 The effect of grafting on the interfacial properties of PIPD - Ti3C2(OH)2
4.3.1 Surface morphology analysis of the PIPD grafted Ti3C2(OH)2
4.3.2 Surface composition analysis of PIPD grafted Ti3C2 (OH)2
4.3.3 The FT-IR analysis of PIPD grafted Ti3C2(OH)2
4.3.4 Surface energy analysis of PIPD grafted Ti3C2(OH)2
4.4 Mechanical properties of PIPD grafted Ti3C2(OH)2
4.5 Ultra-violet resistance
4.6 Hydrothermal aging resistance analysis
4.7 Brief summary
Chapter 5 Surface modification of PIPD fiber using CuO nanowires decorated with silver nanoparticles
5.1 Introduction#.
5.2 Surface morphology analysis of PIPD-CuO NWs-Ag NPs
5.3 X-Ray Diffraction analysis of PIPD-CuO NPs-Ag NPs
5.4 Chemical composition analysis of PIPD-CuO NWs-Ag NPs
5.4.1 Surface element composition analysis of PIPD-CuO NWs-Ag NP
5.4.2 The FT-IR analysis of PIPD-CuO NWs-Ag NPs
5.5 Surface tension of PIPD samples
5.6 Mechanical performance of PIPD-CuO NWs-Ag NPs
5.7 Thermogravimetric analysis (TGA) analysis
5.8 Ultra-violet degradation analysis of PIPD-CuO NWs-Ag NPs
5.9 Hydrothermal resistance analysis
5.10 Antibacterial activities analysis
5.11 Brief summary
Conclusions
The innovation of this thesis:
Perspectives
References
List of Publications
Acknowledgements
Resume
【参考文献】:
期刊论文
[1]Synthesis and characterization of ZnO–CuO nanocomposites powder by modified perfume spray pyrolysis method and its antimicrobial investigation[J]. D.Saravanakkumar,S.Sivaranjani,K.Kaviyarasu,A.Ayeshamariam,B.Ravikumar,S.Pandiarajan,C.Veeralakshmi,M.Jayachandran,M.Maaza. Journal of Semiconductors. 2018(03)
本文编号:3155684
【文章来源】:哈尔滨工业大学黑龙江省 211工程院校 985工程院校
【文章页数】:153 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
Chapter 1 Introduction
1.1 Background, objective and significance of the subject
1.2 Progress in high performance rigid rod fibers
1.2.1 Structure and properties of PBO fiber
1.2.2 Structure and properties of PIPD fiber
1.2.3 The properties of high performance fibers
1.3 The Compressive property of high performance fiber
1.3.1 The compressive behavior of high performance fiber
1.3.2 The intermolecular structure vs compressive property of PIPD fiber
1.4 Progress in surface modification methods of high performance fibers
1.4.1 Surface modification by changing surface chemically
1.4.2 Surface modification by adding new material onto the surface
1.4.3 Other surface modification methods
1.5 Bond Failure Modes
1.5.1 Definition of Failure Modes
1.5.2 Failure Modes mechanisms
1.6 Main research content
Chapter 2 Experimental Materials and Methods
2.1 Experimental materials and instruments
2.1.1 Experimental material
2.1.2 Experimental instruments#.
2.2 Surface modification methods of PIPD fiber
2.2.1 Surface modification of PIPD fiber using Nitric acid
2.2.2 Preparation of PIPD fiber grafted MWCNTs
2.2.3 Preparation of PIPD fiber grafted MXene nanosheets
2.2.4 Preparation of PIPD fiber coated CuO NWs decorated with Ag NPs
2.3 Surface structure and characterization performance of experimentalmaterials
2.3.1 Morphological analysis
2.3.2 Surface composition analysis
2.3.3 Structural analysis
2.3.4 Characterization performance of PIPD fiber
2.3.5 Characterization performance of PIPD/epoxy resin composite
Chapter 3 Surface modification of PIPD fibers by grafting MWCNTs
3.1 Introduction
3.2 Surface morphology of the acid treated PIPD fibers
3.3 Surface roughness of acid treatment PIPD fibers
3.4 X-ray photoelectron microscopy of acid treatment PIPD fibers
3.5 Mechanical properties of acid treated PIPD fibers
3.6 Surface energy and wettability of acid treated PIPD fibers
3.7 Surface composition of MWCNTs
3.7.1 X-ray photoelectron microscopy of MWCNTs
3.7.2 Infrared spectroscopy analysis of MWCNTs
3.7.3 Thermogravimetric analysis (TGA) of MWCNTs
3.8 Surface morphology of PIPD fibers grafted MWCNTs
3.9 Surface composition analysis of PIPD fibers grafted MWCNTs
3.9.1 X-ray photoelectron microscopy of PIPD fibers grafted MWCNTs
3.9.2 Infrared spectroscopy analysis of PIPD fibers grafted MWCNTs
3.10 Mechanical properties of PIPD fibers grafted MWCNTs
3.11 Surface energy of PIPD fibers grafted MWCNTs
3.12 Thermogravimetric analysis of PIPD fibers grafted MWCNTs
3.13 Brief summary
3C2(OH)2 nanosheets onto PIPD fiber">Chapter 4 Surface grafting of Ti3C2(OH)2 nanosheets onto PIPD fiber
4.1 Introduction
4.2 Characterization of MXene nanosheets
4.2.1 Surface morphology of MXene nanosheets
4.2.2 The X-ray diffraction (XRD) of MXene nanosheets
4.2.3 The XPS analysis of MXene nanosheets
3C2(OH)2"> 4.3 The effect of grafting on the interfacial properties of PIPD - Ti3C2(OH)2
4.6 Hydrothermal aging resistance analysis
4.7 Brief summary
Chapter 5 Surface modification of PIPD fiber using CuO nanowires decorated with silver nanoparticles
5.1 Introduction#.
5.2 Surface morphology analysis of PIPD-CuO NWs-Ag NPs
5.3 X-Ray Diffraction analysis of PIPD-CuO NPs-Ag NPs
5.4 Chemical composition analysis of PIPD-CuO NWs-Ag NPs
5.4.1 Surface element composition analysis of PIPD-CuO NWs-Ag NP
5.4.2 The FT-IR analysis of PIPD-CuO NWs-Ag NPs
5.5 Surface tension of PIPD samples
5.6 Mechanical performance of PIPD-CuO NWs-Ag NPs
5.7 Thermogravimetric analysis (TGA) analysis
5.8 Ultra-violet degradation analysis of PIPD-CuO NWs-Ag NPs
5.9 Hydrothermal resistance analysis
5.10 Antibacterial activities analysis
5.11 Brief summary
Conclusions
The innovation of this thesis:
Perspectives
References
List of Publications
Acknowledgements
Resume
【参考文献】:
期刊论文
[1]Synthesis and characterization of ZnO–CuO nanocomposites powder by modified perfume spray pyrolysis method and its antimicrobial investigation[J]. D.Saravanakkumar,S.Sivaranjani,K.Kaviyarasu,A.Ayeshamariam,B.Ravikumar,S.Pandiarajan,C.Veeralakshmi,M.Jayachandran,M.Maaza. Journal of Semiconductors. 2018(03)
本文编号:3155684
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/3155684.html