多孔材料和光子晶体在太阳能装置中的热-光辐射特性
发布时间:2021-05-10 19:29
如今,在科学研究和工业生产中急需开发廉价能源装置的新方法。多孔材料因其卓越的机械,热和电绝缘性能而被广泛的应用于的光热系统中,以解决能源问题。受此启发,本文研究了孔隙率对太阳能系统中多孔材料和光子晶体(PhCs)的光学和热辐射特性的影响,为精确的预测光学特性以及提高传热特性提供看一种新的设计方法。本文通过在“Matlab”软件中使用传递矩阵方法(TMM)和“Lumerical FDTD Solutions”中使用有限时间域有限差分(FDTD)法进行数值模拟,对通过多孔材料PhCs的光辐射特性进行了广泛研究。本文还研究了在相同尺寸下具有不同介电常数的多孔硅/多孔氧化铝(p-Si/p-Al2O3)的PhCs在近红外一维透射特性和效率,以及在正入射下800-2200nm波长范围内孔隙率对该结构的透射特性影响,且结果与文献一致。结果表明,该结构孔隙率的增加对应的有效折射率下降,传输通带的宽度减少,阻带的外观更加明显。同时随着单元晶胞的增加,传输阻带产生得更加明显。由此可通过控制该材料的孔隙率,增强通过多孔材料PhCs的透射特性。同时本文利用FDTD模拟了由周期性pSi材料中的圆形气孔组成PhC...
【文章来源】:哈尔滨工业大学黑龙江省 211工程院校 985工程院校
【文章页数】:216 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
Nomenclature
Chapter 1 Introduction
1.1 Background
1.2 Introduction to porous materials
1.2.1 Properties of porous materials
1.2.2 Macroporous materials
1.2.3 Mesoporous materials
1.2.4 Microporous materials
1.2.5 Polymers nanoporous materials
1.2.6 Natural and artificial porous materials
1.3 Basic factors affecting porous materials
1.3.1 Porosity
1.3.2 Pore size
1.3.3 Pore morphology
1.3.4 Specific surface area
1.4 Research progress on porous materials in solar energy systems
1.5 Thesis scope
1.6 Research content
1.7 Thesis organization
Chapter 2 Principles of photonic crystals and computational methods
2.1 Introduction
2.2 Configuration of photonic crystals
2.2.1 One dimensional photonic crystals
2.2.2 Two dimensional photonic crystals
2.2.3 Three dimensional photonic crystals
2.3 Characterization of photonic band gap
2.3.1 Dispersion Relation
2.3.2 Ideal case of reflectance and transmittance spectrum
2.4 Photonic band calculations
2.4.1 Maxwell's equations
2.4.2 Floquet–Bloch theorem,reciprocal lattice, and Brillouin zones
2.5 Plane wave expansion method
2.6 Finite-difference time-domain method
2.6.1 Maxwell's equations discretization
2.6.2 Dielectric function
2.6.3 Initial and boundary conditions
2.6.4 FDTD method stability
2.7 Transfer matrix method
2.7.1 Formulation of the TMM for isotropic structures
2.7.2 Extension of the method for anisotropic components structures
2.8 Summary
Chapter 3 Optical Characteristics through porous materials based photonic crystals
3.1 Introduction
3.2 Near-infrared transmission spectra of porous Si/Al2O3 PhC
3.2.1 Physical structure
3.2.2 Effective refraction index versus porosity (Bruggeman model)
3.2.3 Numerical TMM for multilayer 1D PhC
3.2.4 Discussion
3.3 Limitation of optical properties in pSi photonic crystals
3.3.1 Physical model
3.3.2 Lumerical FDTD solutions and boundary conditions
3.3.3 Physical structure and simulation setup
3.3.4 Discussion
3.4 Optical characteristics of metallo-dielectric nanostructure
3.4.1 Physical model
3.4.2 Visible region optical spectra of composite Ag-pSi dielectric film
3.4.3 Near-infrared optical spectra of composite Ag-pSi dielectric film
3.5 Summary
Chapter 4 Thermal radiation in porous materials based photonic crystals
4.1 Introduction
4.2 Theoretical tools of photonic density of states
4.3 Spectral energy density versus DOS in statistical physics approach
4.4 Spectral energy density on the basis of porous Si PhCs
4.4.1 Conjugate PWE & Fourier expansion method
4.4.2 Discussion of SED in porous Si PhCs
4.5 Thermodynamic properties in porous Si photonic crystals
4.5.1 Thermodynamic concepts as function of DOS in thermal radiation field
4.5.2 Discussion of thermodynamic properties in porous Si PhCs
4.6 Summary
Chapter 5 Heat transfer characteristics in biphasic system porous materials
5.1 Introduction
5.2 Physical modeling of biphasic porous materials
5.3 Energy equation for transient conduction in biphasic system
5.4 Thermal lattice Boltzmann method (TLBM)
5.4.1 Lattices and the Dn Qm models
5.4.2 Numerical principle of 2D lattice Boltzmann method
5.5 D2Q9-LBM for heat conduction in biphasic system
5.5.1 Discretization of LBM & BGK approximation
5.5.2 Boundary conditions treatment
5.6 Analytical modeling of ETC of biphasic porous materials
5.7 Normalization of ETC in biphasic porous materials
5.8 Discussion
5.9 Summary
Chapter 6 Conclusions and recommendations for future research
6.1 Conclusion
6.2 Author's contribution
6.3 Future work
References
List of Publications
Acknowledgements
Resume
【参考文献】:
期刊论文
[1]Techniques for the Preparation of Porous Metals[J]. Peisheng LIU1,2), Bing YU2), Anmin HU2), Kaiming LIANG2) and Shouren GU21)The Key Laboratory of Beam Technology and Material Modification of Ministry of Education & Dept. of Materials Science and Engineering, Beijing Normal University, Beijing 100875, Chi. Journal of Materials Science & Technology. 2002(04)
[2]泡沫陶瓷制备工艺的探讨[J]. 任雪潭,曾令可,王慧. 材料科学与工程. 2001(01)
本文编号:3179927
【文章来源】:哈尔滨工业大学黑龙江省 211工程院校 985工程院校
【文章页数】:216 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
Nomenclature
Chapter 1 Introduction
1.1 Background
1.2 Introduction to porous materials
1.2.1 Properties of porous materials
1.2.2 Macroporous materials
1.2.3 Mesoporous materials
1.2.4 Microporous materials
1.2.5 Polymers nanoporous materials
1.2.6 Natural and artificial porous materials
1.3 Basic factors affecting porous materials
1.3.1 Porosity
1.3.2 Pore size
1.3.3 Pore morphology
1.3.4 Specific surface area
1.4 Research progress on porous materials in solar energy systems
1.5 Thesis scope
1.6 Research content
1.7 Thesis organization
Chapter 2 Principles of photonic crystals and computational methods
2.1 Introduction
2.2 Configuration of photonic crystals
2.2.1 One dimensional photonic crystals
2.2.2 Two dimensional photonic crystals
2.2.3 Three dimensional photonic crystals
2.3 Characterization of photonic band gap
2.3.1 Dispersion Relation
2.3.2 Ideal case of reflectance and transmittance spectrum
2.4 Photonic band calculations
2.4.1 Maxwell's equations
2.4.2 Floquet–Bloch theorem,reciprocal lattice, and Brillouin zones
2.5 Plane wave expansion method
2.6 Finite-difference time-domain method
2.6.1 Maxwell's equations discretization
2.6.2 Dielectric function
2.6.3 Initial and boundary conditions
2.6.4 FDTD method stability
2.7 Transfer matrix method
2.7.1 Formulation of the TMM for isotropic structures
2.7.2 Extension of the method for anisotropic components structures
2.8 Summary
Chapter 3 Optical Characteristics through porous materials based photonic crystals
3.1 Introduction
3.2 Near-infrared transmission spectra of porous Si/Al2O3 PhC
3.2.1 Physical structure
3.2.2 Effective refraction index versus porosity (Bruggeman model)
3.2.3 Numerical TMM for multilayer 1D PhC
3.2.4 Discussion
3.3 Limitation of optical properties in pSi photonic crystals
3.3.1 Physical model
3.3.2 Lumerical FDTD solutions and boundary conditions
3.3.3 Physical structure and simulation setup
3.3.4 Discussion
3.4 Optical characteristics of metallo-dielectric nanostructure
3.4.1 Physical model
3.4.2 Visible region optical spectra of composite Ag-pSi dielectric film
3.4.3 Near-infrared optical spectra of composite Ag-pSi dielectric film
3.5 Summary
Chapter 4 Thermal radiation in porous materials based photonic crystals
4.1 Introduction
4.2 Theoretical tools of photonic density of states
4.3 Spectral energy density versus DOS in statistical physics approach
4.4 Spectral energy density on the basis of porous Si PhCs
4.4.1 Conjugate PWE & Fourier expansion method
4.4.2 Discussion of SED in porous Si PhCs
4.5 Thermodynamic properties in porous Si photonic crystals
4.5.1 Thermodynamic concepts as function of DOS in thermal radiation field
4.5.2 Discussion of thermodynamic properties in porous Si PhCs
4.6 Summary
Chapter 5 Heat transfer characteristics in biphasic system porous materials
5.1 Introduction
5.2 Physical modeling of biphasic porous materials
5.3 Energy equation for transient conduction in biphasic system
5.4 Thermal lattice Boltzmann method (TLBM)
5.4.1 Lattices and the Dn Qm models
5.4.2 Numerical principle of 2D lattice Boltzmann method
5.5 D2Q9-LBM for heat conduction in biphasic system
5.5.1 Discretization of LBM & BGK approximation
5.5.2 Boundary conditions treatment
5.6 Analytical modeling of ETC of biphasic porous materials
5.7 Normalization of ETC in biphasic porous materials
5.8 Discussion
5.9 Summary
Chapter 6 Conclusions and recommendations for future research
6.1 Conclusion
6.2 Author's contribution
6.3 Future work
References
List of Publications
Acknowledgements
Resume
【参考文献】:
期刊论文
[1]Techniques for the Preparation of Porous Metals[J]. Peisheng LIU1,2), Bing YU2), Anmin HU2), Kaiming LIANG2) and Shouren GU21)The Key Laboratory of Beam Technology and Material Modification of Ministry of Education & Dept. of Materials Science and Engineering, Beijing Normal University, Beijing 100875, Chi. Journal of Materials Science & Technology. 2002(04)
[2]泡沫陶瓷制备工艺的探讨[J]. 任雪潭,曾令可,王慧. 材料科学与工程. 2001(01)
本文编号:3179927
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/3179927.html