rGO/SnO 2 /导电聚合物纳米复合材料可控构筑及水中几种痕量重金属离子检测
发布时间:2023-01-15 17:15
众所周知,重金属离子Pb2+,Cd2+和Hg2+(HMIs)等离子因不能生物降解而直接在人体器官中富集,与含S,N和O的蛋白质及各种酶发生强烈的相互作用形成复合物,最终破坏蛋白质分子结构、断裂氢键、抑制酶的生成、改变DNA遗传密码,是致癌、致突变的剧毒物质。即使少量暴露于生物圈也会对人类健康和其他生物体造成严重损害。被世界卫生组织(WHO)列为强污染物。可以说,现代社会对水质的污染控制和水质升级至关重要。因此,开发低成本、有利、快速响应的分析方法和敏感的纳米结构材料对于检测生物圈中的HMIS具有重要意义。电化学传感器是基于电活性物质的检测,涉及化学识别过程及从固体或者液体样品到达电极表面的电荷传输过程,识别作用是通过特殊配体与不同HMIs的不同交互作用力(如螯合作用、配位、范德华力、非共价键π-π作用等)来实现的。而无机、有机、生物等不同识别类型敏感材料被用于识别选择HMIs。无机材料纳米粒子具有高效表面积,可以加快电化学活性种类的扩散,被广泛的认为是构建电化学传感器的理想材料:具有功能化生物相容性、化学稳定性、催化等特...
【文章页数】:167 页
【学位级别】:博士
【文章目录】:
Abstract
中文摘要
Chapter 1 Introduction
1.1 Research background
1.2 Methods used for the detection of heavy metal ions
1.3 Advantages and disadvantages of these methods
1.4 Graphene based electrochemical sensors
1.5 Characteristic, advantages and challenges of using graphene as a base material
1.6 Applications of r GO/metal oxide/ conducting polymers
1.7 Aims and objectives of the present study
Chapter 2 Experimental section
2.1 Chemical reagents and apparatus
2.1.1 Chemical reagents
2.1.2 Apparatus
2.2 Electrochemical behavior
2.3 Analysis and characterizations
2.4 Design strategies of graphene based electrochemical sensors
2.5 Characterization techniques
2.5.1 X-ray diffractometry (XRD)
2.5.2 Transmission electron microscopy (TEM)
2.5.3 Scanning electron microscopy (SEM)
2.5.4 X-ray photoelectron spectroscopy (XPS)
2.5.5 Fourier-transform infrared spectroscopy (FTIR)
2.5.6 Raman spectroscopy
2.5.7 Thermo gravimetric (TG) analysis
2.5.8 Gel permeation chromatography (GPC) analysis
2.5.9 Cyclic voltammetric (CV)
2.5.10 Electrochemical impedance spectrum (EIS)
2.5.11 Square Wave Anodic Stripping Voltammetry (SWASV)
Chapter 3 Synthesis of 3D interlayer nanohybrids composed of r GO/SnO_2/PPy used for the detection of heavy metals ions (Cd~(2+), Cu~(2+), Hg~(2+) and Pb~(2+))
3.1 Introduction
3.2 Material synthesis
3.2.0 Chemicals
3.2.1 Synthesis of reduced graphene oxide/SnO_2
3.2.2 Method for the preparation of polypyrrole
3.2.3 Synthesis of 3D interlayer nanohybrids composed of r GO/SnO_2/PPy
3.3 Analysis and characterizations of Materials
3.4 Results and discussion
3.4.1 Structural and characterization of 3D interlayer nanohybrids composed of r GO/SnO_2/PPy
3.4.2 Stripping Behavior of r GO/SnO_2 toward Cd~(2+), Cu~(2+), Hg~(2+) and Pb~(2+)
3.4.3 Stripping Behavior of r GO/SnO_2/PPy toward Cd~(2+), Cu~(2+), Hg~(2+) and Pb~(2+)
3.5 Discussion mechanism
3.6 Brief Summary
Chapter 4 The polyaniline functionalized r GO/SnO_2 nanocomposite for electrochemical detection of heavy metal ions Pb~(2+),Cd~(2+), Hg~(2+) and Cu~(2+)
4.1 Introduction
4.2 Material synthesis
4.2.1 Chemical Reagents
4.2.2 Method for the r GO/SnO_2/PAni, r GO/PAni and PAni
4.2.3 Preparation of the different samples of r GO/SnO_2/PAni nanocomposites
4.3 Analysis and characterizationsof Materials
4.4 Results and discussion
4.4.1 Structural and characterization of r GO/SnO_2/PAni
4.4.2 Electrochemical characterization of r GO/SnO_2/PAni nanocomposites
4.4.3 Stripping Behavior of r GO/SnO_2/PAni toward Cd~(2+), Cu~(2+), Hg~(2+) and Pb~(2+)
4.5 Discussion on mechanism
4.6 Brief Summary
Chapter 5 Controllable synthesis of porous PEI-functionalized Co_3O_4/rGO nanocomposite as electrochemical sensor for simultaneous as well as individual detection of heavy metalions
5.1 Introduction
5.2 Material synthesis
5.2.1 Chemicals
5.2.2 Method for the preparation of r GO/Co_3O_4/conducting polymers (PEI)
5.2.3 Characterization
5.3 Results and discussion
5.3.1 Characterization of porous r GO/Co_3O_4/PEI nanocomposite
5.3.2 The morphology of the r GO/Co_3O_4/PEI nanocomposite
5.3.3 The structure of the r GO/Co_3O_4/PEI nanocomposite
5.3.4 Electrochemical and other characteristic of the r GO and r GO/Co_3O_4/PEI nanocomposite
5.3.5 CV, EIS, TGA and MS of the r GO/Co_3O_4/PEI nanocomposite
5.3.6 SWV VS DNPV voltammetry analysis for the detection of (Cd~(2+), Pb~(2+), Cu~(2+) and Hg~(2+)) by using r GO/Co_3O_4/PEI nanocomposite modified electrode
5.3.7 Increased potential (V) effect on voltammetry spectrum
5.3.8 Stripping Behavior toward (Pb~(2+), Cd~(2+), Hg~(2+) and Cu~(2+))
5.3.9 Individual Stripping toward (Cd~(2+), Cu~(2+), Hg~(2+) and Pb~(2+)) using SWV
5.3.10 Sensitivity and LOD calculation the r GO/Co_3O_4/PEI nanocomposite
5.4 Brief Summary
Conclusion
结论
References
Acknowledgement
Papers published during Ph.D study
本文编号:3731289
【文章页数】:167 页
【学位级别】:博士
【文章目录】:
Abstract
中文摘要
Chapter 1 Introduction
1.1 Research background
1.2 Methods used for the detection of heavy metal ions
1.3 Advantages and disadvantages of these methods
1.4 Graphene based electrochemical sensors
1.5 Characteristic, advantages and challenges of using graphene as a base material
1.6 Applications of r GO/metal oxide/ conducting polymers
1.7 Aims and objectives of the present study
Chapter 2 Experimental section
2.1 Chemical reagents and apparatus
2.1.1 Chemical reagents
2.1.2 Apparatus
2.2 Electrochemical behavior
2.3 Analysis and characterizations
2.4 Design strategies of graphene based electrochemical sensors
2.5 Characterization techniques
2.5.1 X-ray diffractometry (XRD)
2.5.2 Transmission electron microscopy (TEM)
2.5.3 Scanning electron microscopy (SEM)
2.5.4 X-ray photoelectron spectroscopy (XPS)
2.5.5 Fourier-transform infrared spectroscopy (FTIR)
2.5.6 Raman spectroscopy
2.5.7 Thermo gravimetric (TG) analysis
2.5.8 Gel permeation chromatography (GPC) analysis
2.5.9 Cyclic voltammetric (CV)
2.5.10 Electrochemical impedance spectrum (EIS)
2.5.11 Square Wave Anodic Stripping Voltammetry (SWASV)
Chapter 3 Synthesis of 3D interlayer nanohybrids composed of r GO/SnO_2/PPy used for the detection of heavy metals ions (Cd~(2+), Cu~(2+), Hg~(2+) and Pb~(2+))
3.1 Introduction
3.2 Material synthesis
3.2.0 Chemicals
3.2.1 Synthesis of reduced graphene oxide/SnO_2
3.2.2 Method for the preparation of polypyrrole
3.2.3 Synthesis of 3D interlayer nanohybrids composed of r GO/SnO_2/PPy
3.3 Analysis and characterizations of Materials
3.4 Results and discussion
3.4.1 Structural and characterization of 3D interlayer nanohybrids composed of r GO/SnO_2/PPy
3.4.2 Stripping Behavior of r GO/SnO_2 toward Cd~(2+), Cu~(2+), Hg~(2+) and Pb~(2+)
3.4.3 Stripping Behavior of r GO/SnO_2/PPy toward Cd~(2+), Cu~(2+), Hg~(2+) and Pb~(2+)
3.5 Discussion mechanism
3.6 Brief Summary
Chapter 4 The polyaniline functionalized r GO/SnO_2 nanocomposite for electrochemical detection of heavy metal ions Pb~(2+),Cd~(2+), Hg~(2+) and Cu~(2+)
4.1 Introduction
4.2 Material synthesis
4.2.1 Chemical Reagents
4.2.2 Method for the r GO/SnO_2/PAni, r GO/PAni and PAni
4.2.3 Preparation of the different samples of r GO/SnO_2/PAni nanocomposites
4.3 Analysis and characterizationsof Materials
4.4 Results and discussion
4.4.1 Structural and characterization of r GO/SnO_2/PAni
4.4.2 Electrochemical characterization of r GO/SnO_2/PAni nanocomposites
4.4.3 Stripping Behavior of r GO/SnO_2/PAni toward Cd~(2+), Cu~(2+), Hg~(2+) and Pb~(2+)
4.5 Discussion on mechanism
4.6 Brief Summary
Chapter 5 Controllable synthesis of porous PEI-functionalized Co_3O_4/rGO nanocomposite as electrochemical sensor for simultaneous as well as individual detection of heavy metalions
5.1 Introduction
5.2 Material synthesis
5.2.1 Chemicals
5.2.2 Method for the preparation of r GO/Co_3O_4/conducting polymers (PEI)
5.2.3 Characterization
5.3 Results and discussion
5.3.1 Characterization of porous r GO/Co_3O_4/PEI nanocomposite
5.3.2 The morphology of the r GO/Co_3O_4/PEI nanocomposite
5.3.3 The structure of the r GO/Co_3O_4/PEI nanocomposite
5.3.4 Electrochemical and other characteristic of the r GO and r GO/Co_3O_4/PEI nanocomposite
5.3.5 CV, EIS, TGA and MS of the r GO/Co_3O_4/PEI nanocomposite
5.3.6 SWV VS DNPV voltammetry analysis for the detection of (Cd~(2+), Pb~(2+), Cu~(2+) and Hg~(2+)) by using r GO/Co_3O_4/PEI nanocomposite modified electrode
5.3.7 Increased potential (V) effect on voltammetry spectrum
5.3.8 Stripping Behavior toward (Pb~(2+), Cd~(2+), Hg~(2+) and Cu~(2+))
5.3.9 Individual Stripping toward (Cd~(2+), Cu~(2+), Hg~(2+) and Pb~(2+)) using SWV
5.3.10 Sensitivity and LOD calculation the r GO/Co_3O_4/PEI nanocomposite
5.4 Brief Summary
Conclusion
结论
References
Acknowledgement
Papers published during Ph.D study
本文编号:3731289
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/3731289.html
最近更新
教材专著