LNG船模运动响应数值计算与试验研究
本文关键词:LNG船模运动响应数值计算与试验研究 出处:《华中科技大学》2015年硕士论文 论文类型:学位论文
更多相关文章: LNG Rankine面元法 波浪中运动 六自由度 预报
【摘要】:随着能源需求的增加和人们环保意识的增强,天然气作为一种清洁能源越来越受到青睐。对于液化天然气的海上长距离运输,LNG船无疑是最有效、最经济的选择。耐波性作为船舶安全性能的一个重要指标,船舶在波浪中的剧烈摇荡运动会影响其运营效率和安全性能,因此在船舶的设计和运营过程中是必须考虑其耐波性能。通过数值计算可以得到LNG船在波浪中的运动响应,可以在其设计过程中提供参考,而且计算得到的运动响应可以为研究液舱晃荡载荷时提供运动加载。本文采用三维时域Rankine源数值方法对LNG船有航速时在波浪中的运动响应进行了研究,主要包括以下内容:(1)Rankine源数值方法验证。应用Rankine源方法计算了Wigley II型和III型船在规则波中的运动响应,探讨了N-K(Neumann-Kelvin)线性化和D-B(Double-body)线性化这两种自由面处理方法对计算结果的影响。将计算结果与试验结果进行了对比,两者吻合较好,证明了该方法的可靠性。对于中横剖面系数较大的Wigley II船型,D-B线性化方法的计算结果与试验结果更接近。对于细长船型(比如WigleyIII型船),航速为Fr=0.2时的计算结果与试验结果吻合很好,航速为Fr=0.3、0.4时峰值区域误差在可接受的范围。总体来说,D-B线性化方法的计算结果更加准确。(2)基于Rankine源面元法对LNG船在波浪中运动响应进行了研究。文中采用线性方法和非线性方法,在时域中计算不同浪向和航速情况下LNG船在规则波中的纵摇、升沉、横摇等运动响应,并通过傅里叶变换得到运动响应传递函数曲线。航速19.5Kn的运动响应曲线与17.5Kn的响应曲线基本吻合,这说明航速对运动响应曲线影响不是很明显。浪向对运动响应比较明显,其中横浪情况下的升沉、横摇、横荡最大,迎浪时纵摇最大。在短波时非线性因素对计算结果的影响不明显,在长波时运动响应呈一定的非线性。(3)根据试验规程开展了LNG船模的耐波性试验,并应用谱分析的方法进行了实船预报。文中将试验结果与数值计算结果进行了对比,两者变化规律比较吻合,进一步证明Rankine源方法用于计算船舶运动响应的可行性。基于谱分析方法,采用JONSWAP谱对LNG船在规则波中的计算结果进行预报,得到了不同浪级情况下运动有义幅值。
[Abstract]:With the increase of energy demand and people's awareness of environmental protection, natural gas as a clean energy is more and more popular. Long distance transportation for liquefied natural gas ship at sea, LNG is undoubtedly the most effective, the most economical choice. As a ship seakeeping performance and safety of the important indicators, violent motions of ships in the the waves will influence the operation efficiency and safety performance, so in the design and operation of the ship must be considered. The seakeeping performance can be obtained through numerical calculation of response of a LNG ship in wave motion, can provide a reference in the design process, and calculate the motion response can provide motion loading for research sloshing load. This paper adopts three-dimensional time domain Rankine source numerical method for LNG ship speed of response to the movement of the wave is studied, mainly includes the following contents: (1) Rankine Verify the source numerical method. Using Rankine method to calculate the response of the source Wigley II type and III type ship in regular waves, discusses N-K (Neumann-Kelvin) and D-B (Double-body) linear linear free surface treatment method of these two kinds of effect on the calculation results. The calculation results were compared with the experimental results. A good agreement between them, proves the reliability of the method. The Wigley II hull midship section coefficient of the calculation results, the linear D-B method and experimental results closer to the slender ship. (such as the WigleyIII, speed boat) Fr= 0.2 when the calculation results agree well with the test results, the speed is Fr=0.3,0.4 the peak area of the error in the acceptable range. In general, calculation of D-B linearization method results more accurate. (2) Rankine source panel method was used to study the LNG ship motion in waves using the line based on response. Method and nonlinear method, the calculation of different waves in the time domain and speeds LNG ship in regular waves in pitch, heave response, roll, and get the motion response transfer function curve by Fourier transform. The movement speed of 19.5Kn response curve and 17.5Kn response curve is consistent, which shows that the speed of movement of the response curve of the effect is not obvious. The wave motion response is more obvious, the sea under the condition of heave, roll, yaw, yinglang when pitching. In short wave maximum nonlinear factors on the calculation result is not obvious, the movement in the long wave response is nonlinear. (3) according to the test procedures carried out seakeeping test ship model LNG, and using the method of spectrum analysis of real ship forecast results. The test results were compared with the numerical calculation, the change rule is consistent, further evidence The feasibility of the Rankine source method is applied to calculate the ship's motion response. Based on the spectral analysis method, the JONSWAP spectrum is used to predict the calculated results of the LNG ship in regular waves, and the meaningful amplitude of motion is obtained under different wave levels.
【学位授予单位】:华中科技大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:U661.7
【相似文献】
相关期刊论文 前10条
1 徐刚;段文洋;;常数分布Rankine源法与二阶绕射问题精度研究[J];哈尔滨工程大学学报;2010年09期
2 ;Component Exergy Analysis of Solar Powered Transcritical CO_2 Rankine Cycle System[J];Journal of Thermal Science;2011年03期
3 ;Energy and exergy performance investigation of transcritical CO_2-based Rankine cycle powered by solar energy[J];Science China(Technological Sciences);2012年05期
4 WANG Zhi;YU Yida;HAN Zhonghe;DU Yan;;Parameter optimization on low-temperature reheating organic Rankine cycle[J];热力发电;2013年05期
5 华觉源;关于“兰肯后循环”[J];车用发动机;1979年03期
6 Takafumi.Morisaki;Yasuyuki.Ikegami;;Influence of Temperature Difference Calculation Method on the Evaluation of Rankine Cycle Performance[J];Journal of Thermal Science;2014年01期
7 潘利生;王怀信;史维秀;;Regulation Law of Turbine and Generator in Organic Rankine Cycle Power Generation Experimental System[J];Transactions of Tianjin University;2014年04期
8 张宝吉;;Shape Optimization of Bow Bulbs with Minimum Wave-Making Resistance Based on Rankine Source Method[J];Journal of Shanghai Jiaotong University(Science);2012年01期
9 甘文举;何益斌;;Rankine涡平移模型下低层房屋龙卷风荷载的分析[J];四川建筑科学研究;2009年01期
10 ;编者的话[J];水利水运科技情报;1973年S6期
相关会议论文 前10条
1 Ma Qingwei;Duan Wenyang;Zheng Xing;;Development of MLPG_R method for modeling nonlinear water waves and their interaction with structures[A];中国力学大会——2013论文摘要集[C];2013年
2 ;Constrained Predictive Control Based on State Space Model of Organic Rankine Cycle System for Waste Heat Recovery[A];第24届中国控制与决策会议论文集[C];2012年
3 冯恒强;;From Rankine-Hugoniot Relation Fitting Procedure:Tangential Discontinuity or Intermediate/Slow shock?[A];中国天文学会2007年学术年会论文集[C];2007年
4 陈曦;朱仁传;缪国平;范菊;;Rankine源高阶面元法求解船舶阻力和航行姿态[A];第十三届全国水动力学学术会议暨第二十六届全国水动力学研讨会论文集——F船舶与海洋工程流体力学[C];2014年
5 朱德祥;陈京普;;基于Rankine源的面元法及其船型优化中的应用[A];第九届全国水动力学学术会议暨第二十二届全国水动力学研讨会论文集[C];2009年
6 黄亚娟;赵均海;魏雪英;田文秀;;双剪统一强度理论的Rankine主动土压力统一解[A];第16届全国结构工程学术会议论文集(第Ⅱ册)[C];2007年
7 ;Simulation Study on Scroll Expander Digital Electro-Hydraulic Governing System[A];第24届中国控制与决策会议论文集[C];2012年
8 陈京普;朱德祥;;顶浪中船舶运动的时域预报方法研究[A];第九届全国水动力学学术会议暨第二十二届全国水动力学研讨会论文集[C];2009年
9 W.Baumjohann;H.Matsumoto;R.Nakamura;H.Kojima;A.Balogh;H.Reme;;Walen and Slow-mode Shock Analyses Applied to fast Flows in the Near-Earth Magnetotail By Cluster and Geotail[A];第十一届全国日地空间物理学术讨论会论文摘要集[C];2005年
10 张宝吉;杨佳;;基于水动力学理论的最小阻力船型精细优化设计方法研究[A];第十三届全国水动力学学术会议暨第二十六届全国水动力学研讨会论文集——F船舶与海洋工程流体力学[C];2014年
相关硕士学位论文 前4条
1 刘永清;LNG船模运动响应数值计算与试验研究[D];华中科技大学;2015年
2 李学菊;基于Rankine源的舰船波浪载荷时域计算方法研究[D];哈尔滨工程大学;2009年
3 王伟飞;基于Rankine源法舰船有航速时域三维波浪载荷计算[D];哈尔滨工程大学;2010年
4 周喜武;分层流体中Rankine卵形体生成的内波[D];中国海洋大学;2003年
,本文编号:1368329
本文链接:https://www.wllwen.com/kejilunwen/chuanbolw/1368329.html