当前位置:主页 > 科技论文 > 船舶论文 >

无人水下航行器执行机构故障诊断与容错控制研究

发布时间:2018-11-26 13:33
【摘要】:海洋蕴藏着大量人类社会发展所需却难以开采的自然资源,随着科学技术的进步,人类对海洋的探索与开发日新月著。水下航行器作为人类进军海洋的主要工具之一,受复杂海洋环境的影响,其运动控制系统中的执行机构可能发生各种故障,使得人员与设备的安全受到威胁。在面临故障时水下航行器所采取的故障诊断和容错控制措施,对提高人员和设备的安全保障具有重要意义。国内外开展水下航行器的故障诊断与容错控制研究已逾二十年,而较为系统解决执行机构故障问题的研究方案尚少。鉴于此,本文开展常见回转体式和框体式无人水下航行器(UUV)执行机构的故障诊断与容错控制研究,分别就UUV运动控制系统线性与非线性动力学模型的故障估计与检测、回转体式和框体式UUV运动控制系统执行机构的故障定位与辨识、执行机构发生故障但仍可控时的故障调节主动容错控制以及故障执行机构存在冗余时的控制重构主动容错控制等问题进行深入的研究,提出相应的算法并进行仿真实验。本文的主要研究内容如下:(1)研究模型控制输入的故障估计与检测问题。首先,从UUV运动控制系统的线性与非线性动力学模型着手,设计加性和乘性故障描述因子以表征模型控制输入因执行机构故障而发生的改变;并先后采用H∞滤波估计算法、线性观测估计算法和连续-离散无迹卡尔曼滤波估计算法,通过滤波器或者观测器实时获得线性动力学模型、状态全部可知以及部分可知的非线性动力学模型的故障描述因子估计。然后,结合故障描述因子的估计,设计故障检测函数,实时对比检测函数值与故障阈值实现故障检测。最后,通过仿真实验验证模型控制输入故障估计与检测算法的有效性。(2)研究回转体式UUV执行机构的故障定位与辨识问题。针对回转体式UUV姿态控制与动力推进两个子系统的舵面、舵机、螺旋桨和推进电机等机构,基于模型控制输入的故障估计与检测结果,结合传感器量测数据分析控制输入方程,在排除其它执行机构故障的前提下,定位出当前执行机构的故障,并通过解控制输入方程进一步实现故障辨识。根据分析结果,采用仿真实验验证舵面形变故障定位方法的有效性。(3)研究框体式UUV执行机构的故障定位与辨识问题。针对框体式UUV通常配置的执行机构——推进器,通过分析控制矩阵提出推进器的冗余关系分析算法,并给出框体式UUV故障推进器定位与辨识的前提;基于模型控制输入的故障估计与检测结果,分别研究仅配置标量推进器与配置有矢量推进器的框体式UUV故障推进器的定位与辨识问题;根据以上分析过程,归纳出框体式UUV故障推进器的定位与辨识算法。分别采用仅配置标量推进器和配置有矢量推进器的框体式UUV,建立仿真实验,验证所提故障推进器定位与辨识算法的有效性。(4)基于执行机构的故障诊断研究,解决执行机构发生故障而UUV却仍可控的容错控制问题。针对执行机构发生故障却仍然可控的情形,提出故障调节容错控制算法,通过调节反馈控制输入实现主动容错控制,并应用于舵面形变故障的主动容错控制分析。针对故障执行机构存在配置冗余的情形,提出了无冗余约束的冗余补偿与有冗余约束的冗余规划容错控制算法,前者采用冗余执行机构提供容错控制输入,后者从控制回路中删除故障执行机构并重新规划运动控制输入。通过回转体式UUV舵面形变故障和框体式UUV推进器故障的容错控制仿真实验,分别验证故障调节与控制重构主动容错控制算法的有效性。
[Abstract]:With the progress of science and technology, the exploration and development of the oceans and the oceans and the development of the oceans. As one of the main tools for human entering the sea, the underwater vehicle is affected by the complex marine environment, and the actuators in the motion control system may have various faults, so that the safety of personnel and equipment is threatened. The fault diagnosis and fault-tolerant control measures taken by the underwater vehicle in the face of failure are of great significance to the improvement of the safety and safety of personnel and equipment. The research on fault diagnosis and fault-tolerant control of underwater vehicle is over 20 years. In view of this, the fault diagnosis and fault-tolerant control of a common rotary body and a frame type unmanned underwater vehicle (UUV) actuator is carried out, and the fault estimation and detection of the linear and non-linear dynamic models of the UUV motion control system are respectively carried out. the fault location and identification of the rotary body and the actuator of the frame type UUV motion control system, the fault regulation active fault-tolerant control when the executing mechanism fails but is still controllable, and the control and reconstruction active fault-tolerant control when the fault executing mechanism is redundant, The corresponding algorithm is put forward and the simulation experiment is carried out. The main contents of this paper are as follows: (1) The problem of the estimation and detection of the control input of the model is studied. First, from the linear and non-linear dynamic model of the UUV motion control system, the additive and multiplicative fault description factors are designed to characterize the change of the model control input due to the failure of the actuator, and the H-frequency filtering estimation algorithm is adopted. The linear observation estimation algorithm and the continuous-discrete unscented Kalman filter estimation algorithm are used to obtain the linear dynamic model in real time by a filter or an observer, the state is all clear, and the fault description factor estimation of the partially-known nonlinear dynamic model is obtained. then, the fault detection function, the real-time comparison detection function value and the fault threshold value are combined to realize the fault detection in combination with the estimation of the fault description factor. and finally, the validity of the input fault estimation and detection algorithm is controlled by the simulation experiment verification model. (2) To study the fault location and identification of the rotary UUV actuator. aiming at the rudder surface, the steering engine, the propeller and the propulsion motor of the two subsystems of the rotary type UUV attitude control and the power propulsion, the input equation is controlled based on the fault estimation and detection result of the model control input, and the input equation is controlled in combination with the sensor measurement data analysis, Under the condition of excluding other actuator faults, the fault of the current executing mechanism is located, and the fault identification is further realized by the control of the input equation. Based on the results of the analysis, the effectiveness of the rudder surface deformation fault location method is verified by means of simulation. (3) To study the fault location and identification of the frame UUV actuator. According to the actuator _ propeller which is usually configured for the frame type UUV, the redundant relation analysis algorithm of the propeller is put forward by the analysis control matrix, and the premise of the positioning and identification of the frame type UUV fault propeller is provided; and the fault estimation and detection result input by the model control is carried out based on the model control input, In this paper, the positioning and identification of a frame type UUV (UUV) fault propeller with a vector propulsor are respectively configured. According to the above analysis process, the positioning and identification algorithm of the frame type UUV fault propeller is summarized. In this paper, only a scalar propeller and a frame type UUV equipped with a vector propeller are used to establish a simulation experiment to verify the effectiveness of the proposed positioning and identification algorithm. (4) Based on the fault diagnosis of the actuator, the fault-tolerant control problem of UUV is still controlled by the failure of the actuator. The fault-tolerant control algorithm is proposed to control the fault of the actuator, and the active fault-tolerant control is realized by adjusting the feedback control input, and the active fault-tolerant control analysis is applied to the deformation fault of the rudder surface. Aiming at the situation that the fault executing mechanism has the configuration redundancy, the redundant compensation and the redundant planning fault-tolerant control algorithm with redundant constraint are put forward, the former adopts the redundant executing mechanism to provide the fault-tolerant control input, The latter deletes the failed actuator from the control loop and reprogram the motion control input. The validity of the fault regulation and control reconfiguration active fault-tolerant control algorithm is verified by the fault-tolerant control simulation experiment of the rotary type UUV rudder surface deformation fault and the frame type UUV thruster fault.
【学位授予单位】:西北工业大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:U672

【相似文献】

相关期刊论文 前10条

1 张君昌,侯义斌,李言俊;基于知识熵涨落的系统智能容错控制法[J];弹箭与制导学报;2000年02期

2 黄孝彬,牛玉广,孙万云;容错控制及其在火电厂中的应用[J];电力情报;2000年04期

3 王峰;汪t,

本文编号:2358700


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/chuanbolw/2358700.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户82e2a***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com