当前位置:主页 > 科技论文 > 船舶论文 >

全回转拖轮结构振动与舱室噪声控制技术研究

发布时间:2019-01-10 16:33
【摘要】:全回转拖轮由于动力设备多,功率大,以及在机舱内布置的复杂性,长期以来拖轮舱室的振动噪声问题较为突出,严重影响船员生活和工作环境的舒适度。目前国内外对全回转拖轮振动噪声控制研究较少,本文以36m全回转拖轮为研究对象,通过数值仿真的方法,以有限元和统计能量法为基础,对36m全回转拖轮振动噪声及控制进行了系统的研究,同时对同类船型开展振动噪声实验,并与仿真值对比,验证了数值仿真的准确性和可行性。 首先阐述了船舶主要的声源和振动源,全回转拖轮的声源和振动源较为繁杂,数值也难以确定,本文分析了全回转拖轮主要的声振源,分析了主机和发电机组工作产生的空气和结构噪声特性,以及螺旋桨工作产生结构噪声特性,并通过经验公式和实验测量的方法获得这三个主要声振源的激励频谱图。 其次为了研究全回转拖轮的振动特性,采用有限元软件MSC.Patran建立了36m全回转拖轮的超单元模型,并对模型进行了模态分析和振动预报,对同类船型开展舱室振动实验,并将实验结果与仿真结果对比,验证了模型的准确性。 再次为了研究全回转拖轮的舱室噪声,采用噪声仿真软件VA One,在有限元模型的基础上,建立了36m全回转拖轮的统计能量模型,分析了模型中能量的传播路径,并对模型进行了舱室噪声预报,对同类船型开展舱室噪声实验,验证了模型的准确性,并分析了各个噪声源的噪声贡献率。 最后,为了使全回转拖轮的舱室振动和噪声达到2012年IMO与DE第53次会议对船舶舱室噪声的限制修订规定,采取单层隔振对主机进行隔振,其振动隔振效果接近5dB,同时舱室降噪效果接近6dB(A);并采取粘贴吸声材料,对舱室进行降噪处理,降噪效果较为明显,,为4.7~7.2dB(A)。当采用主机隔振和粘贴吸声材料综合处理的方法时,降噪效果十分显著,接近11dB(A)。进行舱室布置优化设计,设计四种舱室布置方案,以改变声能的传播路径,对不同的房间都有一定降噪效果,为船厂提供选择。
[Abstract]:Due to the large power equipment and the complexity of the arrangement in the engine room, the vibration and noise problem of the tugboat cabin is prominent for a long time, which seriously affects the comfort of the crew's living and working environment. At present, there are few researches on vibration and noise control of full-rotating tugboat at home and abroad. In this paper, 36m full-rotary tug is taken as the research object, based on finite element method and statistical energy method through numerical simulation. The vibration noise and control of 36m full rotating tugboat are studied systematically. At the same time, the vibration and noise experiments of the same ship types are carried out, and compared with the simulation results, the accuracy and feasibility of the numerical simulation are verified. Firstly, the main sound and vibration sources of the ship are expounded. The sound and vibration sources of the full rotary tug are complicated and difficult to determine. The main acoustic and vibration sources of the full rotary tug are analyzed in this paper. The characteristics of air and structural noise produced by main engine and generator unit and the structural noise produced by propeller operation are analyzed. The excitation spectrum of the three main acoustic vibration sources is obtained by empirical formula and experimental measurement. Secondly, in order to study the vibration characteristics of the full rotating tug, the superelement model of the 36m full rotary tugboat is established by using the finite element software MSC.Patran, and the modal analysis and vibration prediction of the model are carried out, and the cabin vibration experiments are carried out on the similar ship types. The accuracy of the model is verified by comparing the experimental results with the simulation results. Thirdly, in order to study the cabin noise of the full rotating tug, the statistical energy model of the 36m full rotary tug is established based on the finite element model by using the noise simulation software VA One, and the energy transmission path in the model is analyzed. The cabin noise prediction of the model was carried out, and the cabin noise experiments of the same ship types were carried out to verify the accuracy of the model, and the noise contribution rate of each noise source was analyzed. Finally, in order to make the cabin vibration and noise of the all-rotary tugboat reach the limit of the 53rd meeting of IMO and DE in 2012, the vibration isolation of the main engine is carried out by single-layer vibration isolation, and the vibration isolation effect is close to 5 dB. At the same time, the noise reduction effect of cabin is close to 6dB (A);. The noise reduction effect of the cabin is better than that of 4.7~7.2dB (A). When the main engine vibration isolation and sound absorbing material are used, the noise reduction effect is very significant, which is close to that of 11dB (A). The optimization design of cabin layout and the design of four cabin layout schemes are carried out to change the transmission path of sound energy, which can reduce noise in different rooms and provide a choice for shipyards.
【学位授予单位】:江苏科技大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:U661.44

【参考文献】

相关期刊论文 前8条

1 苑改红;侯培中;;三聚氰胺泡沫塑料在船艇机舱吸声降噪中的应用[J];工程塑料应用;2008年08期

2 魏强,朱英富,张国良;舰船基座上单层隔振装置能量流数值分析[J];船舶工程;2004年03期

3 徐张明,汪玉,华宏星,沈荣瀛;船舶结构的建模及水下振动和辐射噪声的FEM/BEM计算[J];船舶力学;2002年04期

4 缪旭弘;陶景桥;姚熊亮;杨娜娜;;基于灰色理论的水下双层壳体振动与声辐射统计能量分析[J];船舶力学;2006年02期

5 金建海;冷文浩;吴文伟;须文波;;船舶舱室噪声SEA计算的快速建模及其可视化[J];船舶力学;2010年07期

6 田正东;计方;;阻振质量刚性隔振在舰船基座结构中应用研究[J];船舶力学;2011年08期

7 张峰;许树浩;俞孟萨;刘朋;;浮筏隔振效果评定的矢量四端网络参数方法与试验研究[J];船舶力学;2011年10期

8 刘小勇;刘志宏;行晓亮;雷烨;;SEA在汽车室内噪声控制中的应用研究[J];电声技术;2007年01期



本文编号:2406540

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/chuanbolw/2406540.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户70016***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com