剪切流传感器与水下滑翔机集成应用研究
[Abstract]:Ocean turbulence is of great significance to the study of microscopic and macroscopic motion in the ocean. The shear flow sensor is the most effective tool for measuring ocean turbulence at present. As a new sensor platform, underwater glider provides a new opportunity for ocean turbulence measurement. Because the underwater glider has the advantages of low energy consumption and strong endurance, the integrated application of shear flow sensor and underwater glider can make it possible to measure turbulence in a long time series and a wide range. In this paper, the effective integration of shear flow sensor and underwater glider is studied as follows. Firstly, considering the requirement of shear flow sensor and the characteristics of glider motion, the system integration condition analysis and overall design of the measuring system are carried out. Secondly, the influence of loading mode and position on turbulence measurement is analyzed, and the optimal loading mode and position of turbulence measurement system on glider are determined, and the motion characteristics of underwater glider based on turbulence measurement are analyzed. At the same time, the effect of motion control on motion state parameters is analyzed. Considering that the vibration of the measuring platform will affect the accuracy of the measurement results, the coherence function is used to analyze the vibration signal and the frequency response function is used to filter the vibration signal, which improves the data accuracy of the measurement system. Finally, the kinematic performance of glider and the accuracy of turbulence measurement are verified by experiments in water pool and sea area. The main research results of this paper are as follows: system integration condition analysis and overall design for turbulence measurement system. On the one hand, in order to meet the normal working requirements of the shear flow sensor, the constraints on the underwater glider during the integrated measurement system are analyzed, including gliding velocity, resonance frequency, angle of attack and so on. On the other hand, the key electronic components of turbulence measurement system are selected and the external pressure shell is designed. The influence of different installation modes and installation positions on turbulence measurement was analyzed by using computational fluid dynamics (CFD) method, and the installation location was determined, and a better installation mode was selected through economic and stability indexes. Based on momentum theorem and momentum theorem, the dynamic equations of typical sawtooth motion of underwater glider in vertical and vertical plane are obtained, and the kinematic simulation is carried out for underwater glider with turbulence measurement system. The relation between the control quantity and the state parameter is obtained. The data processing method of the measurement system is studied, and the accuracy of the data is improved. The relationship between vibration signal and turbulence signal is analyzed by using coherence function, and the influence of vibration signal on turbulence signal is evaluated in different frequency bands, and the vibration signal is removed by frequency response function to obtain accurate turbulence data. The wave number spectrum of the original turbulence signal and the turbulent signal without vibration interference is compared with the Nasmyth spectrum, and the accuracy of the method is evaluated. A prototype turbulence measurement system was developed and integrated with an underwater glider to test the accuracy of the motion model and the measurement of turbulent kinetic energy dissipation rate.
【学位授予单位】:天津大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:U674.941;U665.2
【相似文献】
相关期刊论文 前10条
1 孙立潭;再论层结流体平行剪切流的不稳定性(Ⅰ)[J];水动力学研究与进展(A辑);1997年01期
2 徐力平;动态纹影—光子相关测量技术在超音速剪切流中的应用[J];航空学报;1989年02期
3 刘兆存,金忠青;二维平行壁面剪切流失稳内部流动结构初探[J];水利水电科技进展;1995年03期
4 何钟怡,史守峡;线性剪切流中大分子的动力模型[J];哈尔滨建筑大学学报;1999年01期
5 万占鸿;林建忠;孙志林;;三维剪切流场中纤维取向张量封闭格式的研究[J];浙江大学学报(工学版);2008年01期
6 谢涛;章扬忠;王爱科;;交变暨静态剪切流对湍流抑制的互斥性分析[J];核聚变与等离子体物理;2011年02期
7 毛旭锋;夏建新;马彦芳;;粘性颗粒剪切流垂向分选实验研究[J];中央民族大学学报(自然科学版);2007年02期
8 刘兆存;范玮佳;;边壁剪切流若干特性研究[J];重庆交通大学学报(自然科学版);2009年06期
9 吕亚东,胡宗安,崔济亚;剪切流圆管物理参量对声衰减量的影响[J];航空动力学报;1998年04期
10 谢学纲;剪切流从层流向湍流的转变——基本方程和模型[J];北京理工大学学报;1999年05期
相关会议论文 前10条
1 赵红亮;凌国灿;牛家玉;;非均匀尾迹型剪切流中的旋涡演化控制初步探索[A];第十届全国分离流、旋涡和流动控制会议论文集[C];2004年
2 蒋运幸;谢锡麟;余飞龙;麻伟巍;;平面对称剪切流中螺旋涡的实验研究[A];第十一届全国水动力学学术会议暨第二十四届全国水动力学研讨会并周培源诞辰110周年纪念大会文集(上册)[C];2012年
3 姜雪梅;董守平;王彦丽;刘国彪;张红光;;粘性剪切流场中变形液滴的受力分析[A];第十一届全国非线性振动学术会议暨第八届全国非线性动力学和运动稳定性学术会议论文摘要集[C];2007年
4 葛斐;王雷;陆维;洪友士;;剪切流中大长细比圆柱体的二维涡激振动[A];第九届全国水动力学学术会议暨第二十二届全国水动力学研讨会论文集[C];2009年
5 吴雪松;;剪切流中非线性超音速不稳定波的发声机理及特征[A];2003’全国流体力学青年研讨会论文集[C];2003年
6 姜雪梅;董守平;王彦丽;刘国彪;张红光;;粘性剪切流场中变形液滴的受力分析[A];第十一届全国非线性振动学术会议暨第八届全国非线性动力学和运动稳定性学术会议论文集[C];2007年
7 刘兆存;肖勇;;二维平行壁面剪切流内部结构初探[A];第五届全国水动力学学术会议暨第十五届全国水动力学研讨会文集[C];2001年
8 邢超;罗纪生;;剪切流的气动声学数值模拟中边界处理的研究[A];2003空气动力学前沿研究论文集[C];2003年
9 凌国灿;赵红亮;牛家玉;;两类尾迹型剪切流中的旋涡位错[A];第十七届全国水动力学研讨会暨第六届全国水动力学学术会议文集[C];2003年
10 俞炜;周持兴;;黏弹性体系中液滴在剪切流场中凝聚的模拟研究[A];中国力学学会学术大会'2005论文摘要集(上)[C];2005年
相关博士学位论文 前6条
1 李灵杰;外加剪切流下三维磁重联动力学过程的研究[D];浙江大学;2016年
2 李家辉;同时存在剪切磁场和剪切流的等离子体的不稳定性研究[D];浙江大学;2012年
3 陈诚;剪切流扰动的瞬态增长及其控制[D];中国科学技术大学;2011年
4 周林;可压缩自由剪切流的线性稳定性及噪声机理研究[D];中国科学技术大学;2012年
5 李甘牛;撞击剪切流的实验研究[D];南京航空航天大学;2003年
6 谢锡麟;开放流场空间动力学行为的一种实验研究框架及几类经典流场研究[D];复旦大学;2005年
相关硕士学位论文 前9条
1 李子龙;明渠流条件下丁坝水流特性研究[D];上海交通大学;2015年
2 乜云利;自容式湍流剖面观测仪设计与试验研究[D];中国海洋大学;2015年
3 庄秀玲;自由剪切流中相干结构的非线性动力学[D];天津大学;2014年
4 徐田雨;剪切流传感器与水下滑翔机集成应用研究[D];天津大学;2015年
5 张彦斌;振动剪切流过滤过程及其强化性能的研究[D];大连理工大学;2007年
6 邢超;剪切流中气动声学的数值模拟研究[D];天津大学;2003年
7 王庆亮;两相剪切流雾化法微胶囊制备技术的机理、实验及应用[D];南京理工大学;2014年
8 李明远;具有一类剪切背景流的强非线性长波[D];内蒙古大学;2012年
9 陈宝阔;剪切流传感器结构优化与性能测试[D];天津大学;2012年
,本文编号:2407899
本文链接:https://www.wllwen.com/kejilunwen/chuanbolw/2407899.html