动力电池热行为及其过热性分析
[Abstract]:As the core technology of electric vehicles, the improvement and upgrading of power performance and economy is always the focus of research, but it is limited by cooling structure, materials, layout space and use conditions. It is easy to cause thermal safety problems due to the accumulation of heat in battery production. Obviously, this has become the technical bottleneck that limits the sustainable development of power battery. Therefore, there is an urgent need to study the thermodynamics and electrochemical characteristics of power batteries under different operating conditions, to understand and master the working performance of the batteries in essence, and to help to analyze and predict the thermal behavior of the batteries. It also provides reasonable and reliable reference for battery thermal management design and related control strategies. In this paper, the thermal and charging characteristics of Li-ion single cell under normal discharge, internal short circuit and three different operating conditions of high temperature mechanism are analyzed. Firstly, based on the electrochemical mechanism of the battery, the physical model of the single cell was established, and the variation mechanism of the cell temperature field, internal current distribution, electrochemical heat and joule heat was analyzed. A more systematic and comprehensive simulation analysis of lithium battery is established. The simulation results show that under adiabatic environment, the discharge rate of lithium battery directly affects the average temperature rise rate and temperature uniformity. With the increase of discharge rate, the temperature rise rate increases and the temperature uniformity becomes worse. In adiabatic environment, the initial temperature of the cell directly affects the temperature homogeneity of the cell. The lower the initial temperature, the worse the temperature uniformity of the cell. When the initial temperature is high, the average temperature rise rate of the cell increases. The battery temperature quickly exceeds the reasonable working range. The change of the average temperature of the battery is also affected by the different state of charge. The faster the increase rate of the temperature is when the charge is low. By analyzing and summarizing the influence of different factors such as short circuit depth, short circuit position, short circuit cross section and charge state on the performance of lithium ion battery, The conclusions are as follows: with the increase of the short circuit depth and the short circuit cross section, the maximum temperature and the maximum current in the short circuit region will increase. Compared with the inner short circuit in the center of the battery, the maximum temperature of the short circuit region increases significantly when the inner short circuit occurs in the edge region of the battery. In addition, the maximum temperature of the short circuit region increases with the increase of the battery charge. In the process of internal short circuit, the discharge rate has little effect on the maximum temperature in the short circuit region of the battery. Finally, the heat abuse model of the battery under high temperature is established, and the effects of temperature change and surface convection heat transfer coefficient on the cell characteristics are analyzed. The simulation results show that when the battery is working at a lower ambient temperature, the cell only exhibits the characteristics of temperature rise and does not trigger the decomposition side effects of various materials in the battery, and when the ambient temperature reaches a certain high temperature point, There will be a sharp temperature rise in the battery, that is, the thermal runaway side reaction of material decomposition in the battery will be triggered, and with the increase of the ambient temperature, the trigger time of the thermal runaway side reaction of the material decomposition in the battery will be advanced. In addition, at high temperature, the lower surface equivalent heat transfer coefficient of the battery is conducive to inhibit the occurrence of the thermal runaway reaction, and the higher surface equivalent heat transfer coefficient of the battery will trigger the heat runaway state of the battery ahead of time.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM912
【相似文献】
相关期刊论文 前9条
1 任莹辉;仪建华;赵凤起;陈智群;胡荣祖;宋纪蓉;;苦味酸铋的合成、分解反应动力学及热安全性(英文)[J];火炸药学报;2010年05期
2 周诚;王伯周;王友兵;潘清;苏鹏飞;康冰;田宏远;;3,6-二氨基-1,2,4,5-四嗪的百克量合成、晶体结构和热行为[J];火炸药学报;2014年02期
3 孙建平,诸葛兰剑,张可达,徐冬梅,翟金星,吴雪梅;两性聚电解质复合物的热行为研究[J];现代科学仪器;1998年05期
4 徐抗震;赵凤起;丁黎;王晗;李梦;常春然;马海霞;宋纪蓉;;二硝酰胺胍(GDN)的晶体结构和热行为(英文)[J];含能材料;2008年05期
5 刘学清,刘继延,张远方;封闭型聚氨酯微波固化过程中的热行为[J];绝缘材料;2004年06期
6 徐抗震;左现刚;宋纪蓉;王锋;黄洁;常春然;;K(FOX-7)·H_2O的合成、晶体结构和热行为[J];高等学校化学学报;2010年04期
7 张腊莹;朱欣华;卿辉;霍欢;仪建华;白娟;丁黎;;3,4-双(3',5'-二硝基苯-1'-基)氧化呋咱的热行为和非等温热分解动力学研究(英文)[J];固体火箭技术;2011年05期
8 陈咏顺;徐抗震;王敏;马海霞;赵凤起;;Cu(NH_3)_2(FOX-7)_2的晶体结构和热行为[J];火炸药学报;2011年04期
9 刘晓文;刘庄;钟钢;毛小西;;Zr/Al基柱撑蒙脱石的热行为[J];中南大学学报(自然科学版);2010年06期
相关会议论文 前3条
1 王松蕊;卢立丽;刘兴江;;锂离子电池正极材料对电池热行为的影响[A];第29届全国化学与物理电源学术年会论文集[C];2011年
2 肖士洁;吕红红;童元建;徐j华;陈标华;;聚丙烯腈纤维热稳定化过程中几种热行为的比较[A];复合材料:创新与可持续发展(上册)[C];2010年
3 肖士洁;吕红红;童元建;徐j华;陈标华;;聚丙烯腈纤维热稳定化过程中几种热行为的比较[A];复合材料:创新与可持续发展(上册)[C];2010年
相关博士学位论文 前1条
1 刘贤豪;山嵛酸银纳米晶体的制备、热行为及应用研究[D];北京化工大学;2006年
相关硕士学位论文 前6条
1 李帅磊;不对称1,2,4,5-四嗪类含能材料的合成、结构及热行为研究[D];西北大学;2016年
2 薛宁;动力电池热行为及其过热性分析[D];吉林大学;2017年
3 买涛;1,2,4,5-四嗪盐的合成、表征、结构解析、理论计算、热行为以及热力学研究[D];西北大学;2012年
4 李军锋;四嗪类含能化合物的合成、量子化学计算、热行为及非等温热分解动力学研究[D];西北大学;2011年
5 姜丹;热塑性树脂端基结构及其热行为的研究[D];北京化工大学;2001年
6 陈咏顺;FOX-7、DNDZ含能配合物的合成、结构和性质研究[D];西北大学;2012年
,本文编号:2172854
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2172854.html