凝汽器的局部强化传热数值计算研究
[Abstract]:The condenser is the core facility of the condenser equipment, is an important link in the thermal cycle of the power plant to deal with exhausted steam, is the "cold end" of the thermal cycle of the power plant. The condenser vacuum degree, i.e. the condenser pressure, is an important index to characterize the condenser performance. If the condenser vacuum degree is too low, i.e. the condenser pressure is too high, it will affect the safe operation of steam turbine and return water pipeline and many other equipment. The condenser is mainly divided into two heat transfer areas, namely the main condensation area and the air-cooled area. The role of the zone is to condense most of the steam. The role of the air-cooled zone is to condense the remaining steam. The inclusion of non-condensable gas in the steam is cooled. The pumping load of the pumping equipment is reduced and the vacuum of the condenser is maintained basically unchanged. The mass content of non-condensable gases such as air inclusion increases correspondingly. Thermal resistance of heat transfer in air-cooled zone is higher than that in main condensation zone, and coefficient of heat transfer is lower than that in main condensation zone. The internal structure of the condenser or the use of new tube, from the overall improvement of the heat transfer effect of the condenser, or the improvement of condenser matched with the extraction equipment, improve the extraction effect, help to maintain the vacuum of the condenser. Especially using heat pump technology to enhance heat transfer in the air-cooled zone, let heat pump evaporator directly into the condenser air-cooled zone heat transfer, this field is basically blank. The heat transfer characteristics of heat pump evaporator tube bundles in the air-cooled zone were analyzed. 2. Based on the research team, the heat transfer characteristics of the air-cooled zone were analyzed. The physical model of local enhanced heat transfer in condenser is established in this paper. The mathematical model of local enhanced heat transfer in condenser is established according to the physical model. 3. The mathematical model of local enhanced heat transfer in condenser is used to numerically simulate various scales and configurations of the "quench zone" in the air-cooled zone. The results show that the pressure in the air-cooled zone decreases and the heat transfer coefficient in the air-cooled zone increases as long as the "quench zone" is set in the air-cooled zone. Two or three groups of adjacent heat exchanger tubes are set as "quench zone" in the air-cooled zone. The results show that the heat transfer effect is better when three groups of adjacent heat exchanger tubes are set as "quench zone", and the heat transfer effect is better when the "quench zone" is set at the rear of the air-cooled zone. Two or three groups of non-adjacent heat exchanger tubes are used as the "quench zone". The numerical results show that the heat transfer effect of setting two groups of adjacent heat exchanger tubes as the "quench zone" is better than that of setting three groups of non-adjacent heat exchanger tubes as the "quench zone", and the heat transfer effect of setting the "quench zone" in the rear section of the air-cooled zone is better. It is technically feasible to set up "quench zone" in the air-cooled zone, which is conducive to improving the heat transfer efficiency of condensers and improving the economy of power plants.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TK264.11;TM62
【相似文献】
相关期刊论文 前10条
1 杨红军,牛瑞朝;新技术新工艺在凝汽器就位安装中的应用[J];河北电力技术;2000年06期
2 金军杭;;西门子百万等级超超临界机组凝汽器结构分析[J];电站辅机;2007年02期
3 罗俊;;凝汽器低真空故障及诊断方法[J];科技经济市场;2007年08期
4 鲍引年;;提高凝汽器管端密封可靠性的方法[J];电业技术通讯;1958年02期
5 宋珊卿;;影响凝汽器管材选用的一些主要因素[J];电力技术;1982年12期
6 石磊;凝汽器管维护管理的改善[J];发电设备;1987年12期
7 杨炳良;;石洞口第二发电厂凝汽器的选型和主要参数确定[J];电站辅机;1991年02期
8 许立国,沈竞为;不锈钢凝汽器管的应用选择[J];山东电力技术;2001年01期
9 郑凤才,安丰波;国内凝汽器现状分析与改造[J];华东电力;2002年03期
10 张家新;;凝汽器严密性对于机组运行的影响及原因分析[J];山西电力;2006年05期
相关会议论文 前9条
1 王强;张广兴;陈二松;;凝汽器管侧泄漏危害及检测方法[A];中国计量协会冶金分会2009年年会论文集[C];2009年
2 金成将;王永平;郭永明;;凝汽器在机组频繁启停状态下的腐蚀与防护[A];第四届火电行业化学(环保)专业技术交流会论文集[C];2013年
3 金成将;王永平;郭永明;;凝汽器在机组频繁启停状态下的腐蚀与防护[A];全国火电300MW级机组能效对标及竞赛第四十二届年会论文集[C];2013年
4 何朝辉;;核电650MW机组凝汽器的技术优化[A];中国核科学技术进展报告(第二卷)——中国核学会2011年学术年会论文集第2册(铀矿冶分卷、核能动力分卷(上))[C];2011年
5 闫光明;孙广建;;凝汽器管束堵管原因分析[A];全国火电600MW机组技术协作会第13届年会论文集[C];2009年
6 朱友;;350MW机组凝汽器不锈钢管化学清洗[A];第四届火电行业化学(环保)专业技术交流会论文集[C];2013年
7 韩传伟;孙加生;;华能济宁电厂100MW机组凝汽器改造[A];全国火电100MW级机组技术交流协作网第一届年会论文集[C];2002年
8 崔北休;;600MW超临界机组凝汽器焊接[A];第四届安徽科技论坛安徽省电机工程学会分论坛论文集[C];2006年
9 陈逢志;胡明涛;;不锈钢管式凝汽器安装工艺探讨[A];第四届数控机床与自动化技术高层论坛论文集[C];2013年
相关硕士学位论文 前10条
1 张鹏;滨海电厂凝汽器阴极保护数值仿真研究[D];广东海洋大学;2015年
2 魏诗善;热电车间汽轮发电机凝汽器节能改造技术经济性分析[D];华南理工大学;2015年
3 李婷婷;火电厂凝汽器(火积)耗散分析[D];华北电力大学;2015年
4 杨亮;基于集成神经网络的凝汽器故障诊断[D];华北电力大学;2015年
5 杨蒋文;侧向抽气式窄带状凝汽器布管方案研究[D];上海电力学院;2016年
6 徐冰;凝汽器的局部强化传热数值计算研究[D];山东大学;2017年
7 刘天成;凝汽器抽真空系统研究与性能优化[D];山东大学;2017年
8 丁燕;凝汽器动态数学模型及故障诊断系统研究[D];武汉大学;2005年
9 曾硕;核电站凝汽器管束布置优化及研究[D];上海交通大学;2012年
10 曲建丽;电站凝汽器的数值模拟研究与应用[D];山东大学;2007年
,本文编号:2186939
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2186939.html