碳纳米管修饰金属硫化物的制备及其在储能器件中的应用
[Abstract]:With the increasing global energy consumption and the rapid deterioration of the environment, the development of clean new energy has been widely concerned by scientists all over the world. As a new type of energy storage device, supercapacitor is widely used in many fields because of its high power density, high charge and discharge speed, long cycle life and environmental friendliness. With the flexibility and thinning of portable electronic products, the development of flexible all-solid-state supercapacitors has become a research hotspot. The performance of supercapacitors depends on the selection of electrode materials. Transition metal sulfides are widely used because of their high theoretical capacity and good conductivity. Carbon nanotubes (CNT) have good flexibility and mechanical stability and are often used as scaffolds to construct hybrid structures. Therefore, the combination of CNT and transition metal sulfides can not only improve the flexibility of the devices, but also improve the specific capacity. In this thesis, copper (CuS), zinc sulfide (ZnS) and manganese sulfide (MnS) and CNT (manganese sulfide) were used as core materials to prepare composite nanomaterials with different morphologies by hydrothermal synthesis method, and they were used in flexible all-solid supercapacitors. Show excellent electrochemical performance. The main research results of this thesis are as follows: (1) A layer of CuS nanowires was uniformly grown on the periphery of CNT by a simple two-step hydrothermal synthesis method. The synthesized CuS@CNT nanocomposites were used in supercapacitors at the current density of 1 Ag ~ (-1). The specific capacitance is up to 566.4 F g -1. Furthermore, S@CuS@CNT composite was synthesized by combining sulfur with CuS@CNT and used in lithium sulfur battery. When the current density is 0. 1 C, the capacity of the cell reaches 1019 mA h g -1. (2) an ultrathin ZnS nanocrystalline was synthesized on the periphery of CNT by a simple hydrothermal method based on template. By changing the concentration of Zn (NO3) 2 and hydrothermal reaction time, the formation process of ultrathin ZnS nanoparticles was demonstrated. Compared with the pure ZnS nanospheres, it has a larger specific surface area, which is conducive to the diffusion of ions in the electrolyte, thus showing a better electrochemical performance. The electrode material was assembled into a symmetrical all-solid supercapacitor, and the specific capacitance reached 159.6 F g-1 under 1 A g ~ (-1) test. Finally, the four devices were connected in series and charged. Light emitting diodes of different colors can be illuminated. (3) A layer of 纬 -MnS nanoparticles was successfully grown on the periphery of CNT by low cost hydrothermal reaction. A layer of silicon dioxide (Si O 2) was grown around CNT, which was beneficial to the vertical growth of 纬 -MnS along the longitudinal axis of CNT. Finally, the addition of sodium sulfide (Na2S) provided both sulfur source and Si O 2 removal. The controllable synthesis of 纬 -MnSCNT with different morphologies was achieved by changing the hydrothermal reaction time. When the material is used in supercapacitor, the specific capacitance is up to 641.9 F g ~ (-1) under 0.5 A g ~ (-1) test. After 3000 cycles of charge and discharge, the capacity retention rate is as high as 94.6%. Finally, symmetrical flexible all-solid state supercapacitors were assembled and showed excellent electrochemical performance.
【学位授予单位】:信阳师范学院
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TB383.1;TM53
【相似文献】
相关期刊论文 前10条
1 陈新丽;李伟善;;超级电容器电极材料的研究现状与发展[J];广东化工;2006年07期
2 许开卿;吴季怀;范乐庆;冷晴;钟欣;兰章;黄妙良;林建明;;水凝胶聚合物电解质超级电容器研究进展[J];材料导报;2011年15期
3 梓文;;超高能超级电容器[J];兵器材料科学与工程;2013年04期
4 ;欧盟创新型大功率超级电容器问世[J];功能材料信息;2014年01期
5 周霞芳;;无污染 充电快 春节后有望面市 周国泰院士解密“超级电容器”[J];环境与生活;2012年01期
6 江奇,瞿美臻,张伯兰,于作龙;电化学超级电容器电极材料的研究进展[J];无机材料学报;2002年04期
7 朱修锋,王君,景晓燕,张密林;超级电容器电极材料[J];化工新型材料;2002年04期
8 景茂祥,沈湘黔,沈裕军,邓春明,翟海军;超级电容器氧化物电极材料的研究进展[J];矿冶工程;2003年02期
9 朱磊,吴伯荣,陈晖,刘明义,简旭宇,李志强;超级电容器研究及其应用[J];稀有金属;2003年03期
10 贺福;碳(炭)材料与超级电容器[J];高科技纤维与应用;2005年03期
相关会议论文 前10条
1 马衍伟;张熊;余鹏;陈尧;;新型超级电容器纳米电极材料的研究[A];2009中国功能材料科技与产业高层论坛论文集[C];2009年
2 张易宁;何腾云;;超级电容器电极材料的最新研究进展[A];第二十八届全国化学与物理电源学术年会论文集[C];2009年
3 钟辉;曾庆聪;吴丁财;符若文;;聚苯乙烯基层次孔碳的活化及其在超级电容器中的应用[A];中国化学会第15届反应性高分子学术讨论会论文摘要预印集[C];2010年
4 赵家昌;赖春艳;戴扬;解晶莹;;扣式超级电容器组的研制[A];第十二届中国固态离子学学术会议论文集[C];2004年
5 单既成;陈维英;;超级电容器与通信备用电源[A];通信电源新技术论坛——2008通信电源学术研讨会论文集[C];2008年
6 王燕;吴英鹏;黄毅;马延风;陈永胜;;单层石墨用作超级电容器的研究[A];2009年全国高分子学术论文报告会论文摘要集(上册)[C];2009年
7 赵健伟;倪文彬;王登超;黄忠杰;;超级电容器电极材料的设计、制备及性质研究[A];中国化学会第27届学术年会第10分会场摘要集[C];2010年
8 张琦;郑明森;董全峰;田昭武;;基于薄液层反应的新型超级电容器——多孔碳电极材料的影响[A];中国化学会第27届学术年会第10分会场摘要集[C];2010年
9 马衍伟;;新型超级电容器石墨烯电极材料的研究[A];第七届中国功能材料及其应用学术会议论文集(第7分册)[C];2010年
10 刘不厌;彭乔;孙s,
本文编号:2214254
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2214254.html