光伏微电网能量调度及储能容量配置研究
[Abstract]:Energy storage technology is one of the key technologies of smart grid, green clean new energy network, electric vehicle and even energy Internet. It can not only effectively realize the demand side management, but also eliminate the peak and valley difference caused by the instability of renewable energy. Smoothing the random load can improve the efficiency of power equipment, improve the cost of power generation and improve the stability of the whole power network. It is an effective means to adjust the frequency and compensate the load fluctuation. The reasonable configuration of energy storage system in practical engineering can reduce the cost of pre-construction and maintenance as much as possible while matching photovoltaic system, which is of great significance for the promotion of new energy. Based on the 11OkW photovoltaic microgrid project, this paper mainly studies the configuration of the composite energy storage capacity of the photovoltaic microgrid, considering two kinds of composite energy storage system of the micro-grid, based on the annual lighting history data of the model area. The prediction of photovoltaic force is carried out. Then analyze the load type, predict system requirements and load priority. Then the optimal energy storage capacity is obtained by using the probability density function method of discrete random variables and the constraint conditions are satisfied. Firstly, the research background of microgrid system is given, and the important significance, research value and application value of distributed new energy intelligent microgrid in the era of energy crisis are pointed out, and the development status of photovoltaic power generation industry at home and abroad is expounded. Then the energy storage technology and basic needs are analyzed. Secondly, the mathematical model of photovoltaic cell and its working characteristics are given, and the simulation model of photovoltaic cell is established. At the same time, the model of lithium battery and super capacitor is analyzed, and a single energy storage model is established. Then the output characteristics of photovoltaic microgrid based on environmental factors are studied. In this paper, the power difference probability is used to configure the capacity of composite energy storage. Based on the prediction of PV system output and system load, the important load operation is ensured. After determining the optimization objectives and constraints, use the YALMIP toolbox for standard optimization. Finally, combining the 110KW photovoltaic microgrid project of our school, an example analysis is carried out to verify the rationality of the configuration of composite energy storage capacity. The configuration of composite energy storage capacity of microgrid depends on engineering experience and lacks theoretical guidance and quantitative standard. The configuration method of composite energy storage capacity used in this paper takes the economic optimization as the main optimization objective and takes into account the reliability of the important load in the load. The research results in this paper can provide a technical reference for the configuration of the composite energy storage capacity of the photovoltaic system. However, in the practical application, the configuration method of the composite energy storage system proposed in this paper needs to be further studied because the situation will be more complex. With the development of science and technology, the innovation of energy storage materials and energy storage technology, the promotion of smart grid, and the continuous accumulation of engineering experience, At the beginning of engineering construction, it will be able to predict more accurately the energy storage capacity allocation scheme to meet the system requirements.
【学位授予单位】:安徽工程大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM615;TM76
【参考文献】
相关期刊论文 前10条
1 娄素华;易林;吴耀武;侯婷婷;杨育丰;;基于可变寿命模型的电池储能容量优化配置[J];电工技术学报;2015年04期
2 马速良;马会萌;蒋小平;段国栋;李娜;;基于Bloch球面的量子遗传算法的混合储能系统容量配置[J];中国电机工程学报;2015年03期
3 马晓博;陈敏;周辛男;;微电网概率性最优的储能容量研究[J];中国电力;2015年01期
4 路欣怡;黄扬琪;刘念;雷金勇;张建华;;含风光柴蓄的海岛独立微电网多目标优化调度方法[J];现代电力;2014年05期
5 肖峻;张泽群;张磐;梁海深;王成山;;用于优化微网联络线功率的混合储能容量优化方法[J];电力系统自动化;2014年12期
6 谭兴国;王辉;张黎;邹亮;;微电网复合储能多目标优化配置方法及评价指标[J];电力系统自动化;2014年08期
7 张峰;董晓明;梁军;韩学山;孙舶皓;王洪涛;;考虑目标分解及其互补平抑的风电场复合储能容量优化[J];电力系统自动化;2014年07期
8 刘冠群;袁越;王敏;戴欣;许璐;;考虑经济成本的光伏电站储能容量配置[J];可再生能源;2014年01期
9 赵奕凡;杜常清;颜伏伍;;动力电池组能量均衡管理控制策略[J];电机与控制学报;2013年10期
10 马帅旗;;太阳能光伏电池建模及V-I特性研究[J];电源技术;2013年08期
相关博士学位论文 前6条
1 侯婷婷;含大规模风电的电力系统储能电源优化配置研究[D];华中科技大学;2014年
2 谭兴国;微电网复合储能柔性控制技术与容量优化配置[D];山东大学;2014年
3 林少伯;含光伏电源的微电网储能控制技术研究[D];华北电力大学;2013年
4 陈昌松;光伏微网的发电预测与能量管理技术研究[D];华中科技大学;2011年
5 唐西胜;超级电容器储能应用于分布式发电系统的能量管理及稳定性研究[D];中国科学院研究生院(电工研究所);2006年
6 欧阳名三;独立光伏系统中蓄电池管理的研究[D];合肥工业大学;2004年
相关硕士学位论文 前5条
1 曾虎森;独立微电网储能系统的研究[D];广西大学;2013年
2 张勃;北京地区光伏系统发电功率预测的研究[D];燕山大学;2013年
3 陈义鹏;独立光伏发电系统储能技术及放电管理的研究[D];燕山大学;2012年
4 杨为;分布式电源的优化调度[D];合肥工业大学;2010年
5 罗光毅;蓄电池智能管理系统[D];浙江大学;2003年
,本文编号:2227394
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2227394.html