当前位置:主页 > 科技论文 > 电气论文 >

光伏微电网能量调度及储能容量配置研究

发布时间:2018-09-06 20:02
【摘要】:储能技术是现在智能电网、绿色清洁新能源网、电动交通工具乃至能源互联网的关键技术之一,不但可以有效实现需求侧管理、消除可再生能源不稳定而产生的峰谷差、平滑具有随机性的负荷,而且可以提高电力设备效率、改善发电成本、提高整体用电网络运行稳定性,是调整频率、补偿负荷波动的一种有效手段。实际工程中合理的配置储能系统,能够在匹配光伏系统的同时,尽可能的减少前期建设投入和后期维护成本,对于新能源的推广有着重要意义。本文基于我校11OkW光伏微网项目,主要进行了光伏微网复合储能容量配置研究,考虑两种储能复合成微电网储能系统,采用模型地区的年光照历史数据为基础,进行光伏出力预测。然后分析负载类型,预测系统需求和负载优先级。再通过统计,使用离散型随机变量的概率密度函数方法,求出最优储能容量,满足约束条件。论文首先给出微网系统的研究背景,指出分布式新能源的智能微网在能源危机时代的重要意义、研究价值和应用价值,并阐述国内外光伏发电产业发展现状。之后对储能技术和基本需求加以分析。其次,给出光伏电池的数学模型和其工作特性,建立光伏电池的仿真模型。同时进行了锂电池和超级电容的模型分析,建立单一储能的模型。接着研究了基于环境因素的光伏微网输出特性。本文提出了使用功率差额概率来进行复合储能的容量配置,在预测光伏系统输出和系统负载的基础上,确保重要负载运行。确定优化目标和约束条件后,使用YALMIP工具箱进行标准优化处理。最后结合我校110KW光伏微电网项目,进行算例分析,验证复合储能容量配置的合理性。微电网复合储能容量配置多依赖工程经验,缺乏理论指导和定量标准。本文使用的复合储能容量配置方法,以经济性最优为主要优化目标,同时考虑了负载中重要负载的可靠性,本文的研究结果可为光伏系统的复合储能容量配置提供技术参考。但在实际运用中,由于考虑情况会更加复杂,本文提出的复合储能系统的配置方法有待进一步研究。随着科学技术的不断发展,储能材料与储能技术的不断创新,智能电网的不断推广,工程经验的持续累积,在工程建设之初必能更加准确的预估满足系统需求的储能容量配置方案。
[Abstract]:Energy storage technology is one of the key technologies of smart grid, green clean new energy network, electric vehicle and even energy Internet. It can not only effectively realize the demand side management, but also eliminate the peak and valley difference caused by the instability of renewable energy. Smoothing the random load can improve the efficiency of power equipment, improve the cost of power generation and improve the stability of the whole power network. It is an effective means to adjust the frequency and compensate the load fluctuation. The reasonable configuration of energy storage system in practical engineering can reduce the cost of pre-construction and maintenance as much as possible while matching photovoltaic system, which is of great significance for the promotion of new energy. Based on the 11OkW photovoltaic microgrid project, this paper mainly studies the configuration of the composite energy storage capacity of the photovoltaic microgrid, considering two kinds of composite energy storage system of the micro-grid, based on the annual lighting history data of the model area. The prediction of photovoltaic force is carried out. Then analyze the load type, predict system requirements and load priority. Then the optimal energy storage capacity is obtained by using the probability density function method of discrete random variables and the constraint conditions are satisfied. Firstly, the research background of microgrid system is given, and the important significance, research value and application value of distributed new energy intelligent microgrid in the era of energy crisis are pointed out, and the development status of photovoltaic power generation industry at home and abroad is expounded. Then the energy storage technology and basic needs are analyzed. Secondly, the mathematical model of photovoltaic cell and its working characteristics are given, and the simulation model of photovoltaic cell is established. At the same time, the model of lithium battery and super capacitor is analyzed, and a single energy storage model is established. Then the output characteristics of photovoltaic microgrid based on environmental factors are studied. In this paper, the power difference probability is used to configure the capacity of composite energy storage. Based on the prediction of PV system output and system load, the important load operation is ensured. After determining the optimization objectives and constraints, use the YALMIP toolbox for standard optimization. Finally, combining the 110KW photovoltaic microgrid project of our school, an example analysis is carried out to verify the rationality of the configuration of composite energy storage capacity. The configuration of composite energy storage capacity of microgrid depends on engineering experience and lacks theoretical guidance and quantitative standard. The configuration method of composite energy storage capacity used in this paper takes the economic optimization as the main optimization objective and takes into account the reliability of the important load in the load. The research results in this paper can provide a technical reference for the configuration of the composite energy storage capacity of the photovoltaic system. However, in the practical application, the configuration method of the composite energy storage system proposed in this paper needs to be further studied because the situation will be more complex. With the development of science and technology, the innovation of energy storage materials and energy storage technology, the promotion of smart grid, and the continuous accumulation of engineering experience, At the beginning of engineering construction, it will be able to predict more accurately the energy storage capacity allocation scheme to meet the system requirements.
【学位授予单位】:安徽工程大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM615;TM76

【参考文献】

相关期刊论文 前10条

1 娄素华;易林;吴耀武;侯婷婷;杨育丰;;基于可变寿命模型的电池储能容量优化配置[J];电工技术学报;2015年04期

2 马速良;马会萌;蒋小平;段国栋;李娜;;基于Bloch球面的量子遗传算法的混合储能系统容量配置[J];中国电机工程学报;2015年03期

3 马晓博;陈敏;周辛男;;微电网概率性最优的储能容量研究[J];中国电力;2015年01期

4 路欣怡;黄扬琪;刘念;雷金勇;张建华;;含风光柴蓄的海岛独立微电网多目标优化调度方法[J];现代电力;2014年05期

5 肖峻;张泽群;张磐;梁海深;王成山;;用于优化微网联络线功率的混合储能容量优化方法[J];电力系统自动化;2014年12期

6 谭兴国;王辉;张黎;邹亮;;微电网复合储能多目标优化配置方法及评价指标[J];电力系统自动化;2014年08期

7 张峰;董晓明;梁军;韩学山;孙舶皓;王洪涛;;考虑目标分解及其互补平抑的风电场复合储能容量优化[J];电力系统自动化;2014年07期

8 刘冠群;袁越;王敏;戴欣;许璐;;考虑经济成本的光伏电站储能容量配置[J];可再生能源;2014年01期

9 赵奕凡;杜常清;颜伏伍;;动力电池组能量均衡管理控制策略[J];电机与控制学报;2013年10期

10 马帅旗;;太阳能光伏电池建模及V-I特性研究[J];电源技术;2013年08期

相关博士学位论文 前6条

1 侯婷婷;含大规模风电的电力系统储能电源优化配置研究[D];华中科技大学;2014年

2 谭兴国;微电网复合储能柔性控制技术与容量优化配置[D];山东大学;2014年

3 林少伯;含光伏电源的微电网储能控制技术研究[D];华北电力大学;2013年

4 陈昌松;光伏微网的发电预测与能量管理技术研究[D];华中科技大学;2011年

5 唐西胜;超级电容器储能应用于分布式发电系统的能量管理及稳定性研究[D];中国科学院研究生院(电工研究所);2006年

6 欧阳名三;独立光伏系统中蓄电池管理的研究[D];合肥工业大学;2004年

相关硕士学位论文 前5条

1 曾虎森;独立微电网储能系统的研究[D];广西大学;2013年

2 张勃;北京地区光伏系统发电功率预测的研究[D];燕山大学;2013年

3 陈义鹏;独立光伏发电系统储能技术及放电管理的研究[D];燕山大学;2012年

4 杨为;分布式电源的优化调度[D];合肥工业大学;2010年

5 罗光毅;蓄电池智能管理系统[D];浙江大学;2003年



本文编号:2227394

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2227394.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户75a48***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com