当前位置:主页 > 科技论文 > 电气论文 >

基于WRF的DBN风速预测与并行优化研究

发布时间:2018-10-09 10:35
【摘要】:高精度的风速预测对风电发展具有重要意义。目前针对风速预测研究大多集中于两方面:第一,采用中尺度数值模式进行风速预报,但其因计算量大具有计算时长和硬件设备的局限性,并且单一中尺度模式预报效果已不能满足当前预测精度需求,需要进一步引入学习模型对其预报风速进行订正和预测;第二,采用学习模型进行风速预测,现采用的学习方法大多为浅层机器学习方法,学习能力有限,预测精度还有待进一步提高,而深度学习模型具有更深层次的学习能力,能更好地描述目标物体。鉴于此,为了对中尺度WRF(Weather Research and Forecast,天气研究与预报)模式进行并行优化和提高风速预测准确率,本文主要做了以下三个工作:(1)WRF模式风速预报效果评估:首先采用修正海拔高度后的地形资料对WRF模式进行风力模拟,得出修正数据在山地等复杂地形下对WRF模式具有一定影响的结果。通过获取的简单地形下某70m高测风塔的实际测风数据,对WRF模式重新计算后输出的气压、气温、风速、风向四个气象要素预报结果进行了全面检测和分析,结果表明,WRF模式预报与实测数据具有一定的整体相关性且符合建立DBN(Deep Belief Nets,深度信念网络)风速预测模型的需求。(2)WRF模式的并行优化:分别搭建了多机多核集群和小型塔式工作站两种并行计算平台,采用三种并行方式对WRF模式进行模拟计算,获得了较优的并行效能;并利用并行效率、加速比、价格等参数分别对并行方式和计算平台进行对比分析,以便用户能根据计算需要合理选择更高效的并行方式和计算平台。(3)构建基于WRF的DBN风速预测模型:为提高WRF模式风速预报的准确率,引入深度学习模型DBN,该模型具有先无监督后有监督学习的优点,通过将WRF模式风速预报结果与实测数据作为输入对深度信念网络进行逐层训练,构建了基于WRF的DBN风速预测模型,并进行仿真实验。以上实验验证了本文对WRF模式并行优化的有效性和适用性,以及通过相关对比实验证明了本文构建的风速预测模型具有更深层次的学习能力,获得了更高的预测精度且更具应用性。
[Abstract]:High precision wind speed prediction is of great significance to wind power development. At present, the researches on wind speed prediction are mainly focused on two aspects: first, the mesoscale numerical model is used for wind speed prediction, but due to the large amount of calculation, it has the limitations of long calculation time and hardware equipment. And the prediction effect of single mesoscale model can no longer meet the demand of current forecast precision, so it is necessary to further introduce learning model to revise and forecast the predicted wind speed. Secondly, the learning model is used to predict the wind speed. Most of the current learning methods are shallow machine learning, with limited learning ability, and the prediction accuracy needs to be further improved, while the depth learning model has deeper learning ability and can better describe the target object. In view of this, in order to optimize the mesoscale WRF (Weather Research and Forecast, weather research and forecast model in parallel and improve the accuracy of wind speed prediction, The main work of this paper is as follows: (1) the wind speed prediction effect of WRF model is evaluated. Firstly, the wind model of WRF is simulated with the topographic data of modified altitude. The results show that the modified data have a certain influence on the WRF model under the complex terrain such as mountainous area. Based on the actual wind data obtained from a 70 m high wind tower under a simple terrain, the forecasted results of the four meteorological elements such as air pressure, air temperature, wind speed and wind direction after recalculating the WRF model are comprehensively detected and analyzed. The results show that the prediction of WRFmodel and the measured data have a certain overall correlation and accord with the demand of establishing DBN (Deep Belief Nets, depth belief network) wind speed prediction model. (2) parallel optimization of WRF model: the multi-machine multi-core cluster and the small cluster are built respectively. Two parallel computing platforms for tower workstations, Three parallel methods are used to simulate and calculate the WRF mode, and the parallel efficiency, speedup ratio, price and other parameters are used to compare and analyze the parallel mode and the computing platform, respectively, and the parallel efficiency, speedup ratio, price and other parameters are used to compare and analyze the parallel mode and the computing platform. So that users can reasonably select a more efficient parallel mode and computing platform according to the needs of computing. (3) build the DBN wind speed prediction model based on WRF: to improve the accuracy of WRF model wind speed prediction, The depth learning model (DBN,) is introduced. The model has the advantages of unsupervised learning and supervised learning. The depth belief network is trained layer by using the wind speed prediction results of WRF model and the measured data as input. A DBN wind speed prediction model based on WRF is constructed and simulated. The above experiments verify the validity and applicability of this paper to the parallel optimization of WRF model, and prove that the wind speed prediction model constructed in this paper has deeper learning ability. Higher prediction accuracy and more application are obtained.
【学位授予单位】:新疆大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM614

【参考文献】

相关期刊论文 前10条

1 叶小岭;刘波;邓华;肖寅;;基于小波分析和PSO优化神经网络的短期风电功率预测[J];可再生能源;2014年10期

2 于凤鸣;李喜仓;宋进华;高春香;卓义;;基于中尺度模式与神经网络的风电功率预测[J];气象科技;2013年04期

3 祝赢;柳艳香;程兴宏;宋丽莉;黄凤新;;线性滚动极值处理方法对数值模拟风速的订正研究[J];热带气象学报;2013年04期

4 杨茂;马秀达;温道扬;庄明振;王文静;;风电功率预测研究综述[J];电测与仪表;2013年07期

5 XIU ChunBo;GUO FuHui;;Wind speed prediction by chaotic operator network based on Kalman Filter[J];Science China(Technological Sciences);2013年05期

6 汪君;王会军;;WRF模式对江苏如东地区风速预报的检验分析[J];气候与环境研究;2013年02期

7 黄凤新;刘寿东;祝赢;柳艳香;;基于滚动极值处理的BP神经网络方法的WRF模式预报风速订正[J];科学技术与工程;2013年07期

8 李俊醅;庄子波;;WRF模式在LINUX集群系统的并行计算与评测[J];计算机技术与发展;2012年07期

9 邓小花;魏立新;;运用神经网络方法对WRF数值模拟结果的初步释用[J];海洋预报;2011年06期

10 罗文;王莉娜;;风场短期风速预测研究[J];电工技术学报;2011年07期

相关会议论文 前3条

1 闫炎;王廷芳;董海萍;王奇;;高时空分辨率天气预报模式在超级计算平台的性能测试分析[A];第32届中国气象学会年会S3 军用数值天气预报技术及应用[C];2015年

2 万杰;胡清华;刘金福;苏鹏宇;于达仁;;基于深度学习理论的短期风速多步预测方法研究[A];智能化电站技术发展研讨暨电站自动化2013年会论文集[C];2013年

3 杨仁勇;林建兴;翁小芳;王凡;李云艳;;用微机集群并行方式运转WRF模式[A];2006年华南地区学术交流会论文集[C];2006年

相关博士学位论文 前1条

1 靳双龙;中尺度WRF模式在风电功率预测中的应用研究[D];兰州大学;2013年

相关硕士学位论文 前4条

1 肖寅;基于WRF模式的短期风速预测及订正方法研究[D];南京信息工程大学;2016年

2 雷庆坤;风电场风速预测模型研究[D];合肥工业大学;2015年

3 苏鹏宇;考虑风速变化模式的风速预报方法研究[D];哈尔滨工业大学;2013年

4 杨江平;基于神经网络组合预测的风电场风速及发电功率短期预测[D];重庆大学;2012年



本文编号:2259017

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2259017.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户99a9e***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com