当前位置:主页 > 科技论文 > 电气论文 >

直流故障电弧的特征提取与识别

发布时间:2018-10-14 17:36
【摘要】:直流电弧因为没有周期性和过零点等特性,致使直流故障电弧的检测要比交流故障电弧困难。国内外对直流故障电弧的特征提取缺乏多样化,因此本文旨在丰富直流故障电弧的特征种类,从特征提取和识别两个方面给出特征的评价标准。本文所研究的电弧属于热阴极、气体中、串联、直流、故障电弧,并通过实验的方法采集正常工作和发生故障电弧时的电流数据,选取电弧刚发生时的不稳定阶段作为特征提取的数据基础。对采集的数据从时域、频域、小波、谱分析和混沌分析这几个角度共提取了 17个特征。在时频分析中,从电流变化的角度提取了时域特征4个,从统计学的角度提取了频域特征3个,利用小波变换提取了小波特征3个。在谱分析中,从幅值角度提取功率谱特征3个,从幅值和相位的角度提取高阶谱特征3个。在混沌分析中,基于自相关法计算时间延迟、基于虚假最近邻法计算嵌入维数,利用这两个参数重构电弧电流的相空间,并利用小数据量法提取最大Lyapunov指数特征1个。给出特征提取层面的特征评价指标,即价值量百分比,并计算各特征的指标值大小,其中混沌特征的指标值最大。利用支持向量机(Support Vector Machines,SVM)对故障电弧特征进行识别。选择基于高斯核函数的非线性支持向量机作为最终分类器。利用网格搜索法和3-折交叉验证法对SVM的参数进行寻优,得到的惩罚参数是0.054409,核参数是1。训练出1个总分类器,准确率为99.999%,17个比较分类器,各自准确率都有下降,但整体保持在99.9%以上。给出识别层面的特征评价标准,即对准确率的贡献程度,并计算各特征的指标值,其中混沌特征的指标值最大。结果证明:本文所用特征提取方法和模式识别策略正确;所提两个指标都可以用来评价特征;直流故障电弧的检测问题本质是一个混沌辨识问题。本文所做研究丰富了直流故障电弧的特征种类,并且针对特征有效性给出了评价标准。
[Abstract]:Because DC arc has no periodicity and zero crossing, it is more difficult to detect DC fault arc than AC fault arc. The feature extraction of DC fault arc is lack of diversification at home and abroad, so the purpose of this paper is to enrich the characteristics of DC fault arc, and give the evaluation criteria from two aspects: feature extraction and recognition. The arc studied in this paper belongs to hot cathode, gas, series, DC, fault arc. The current data of normal operation and fault arc are collected by experimental method. The unstable phase of arc is selected as the data base of feature extraction. A total of 17 features were extracted from time domain, frequency domain, wavelet, spectral analysis and chaos analysis. In time-frequency analysis, four features in time domain, three features in frequency domain and three features in wavelet domain are extracted from current variation, statistics and wavelet transform respectively. In spectral analysis, three power spectral features are extracted from amplitude and three higher-order spectral features are extracted from amplitude and phase. In chaos analysis, time delay is calculated based on autocorrelation method, embedded dimension is calculated based on false nearest neighbor method, the phase space of arc current is reconstructed by these two parameters, and one feature of maximum Lyapunov exponent is extracted by the method of small amount of data. The index of feature evaluation in feature extraction level, that is, the percentage of value, is given, and the index value of each feature is calculated, among which the index value of chaotic feature is the largest. Support vector machine (Support Vector Machines,SVM) is used to identify fault arc features. The nonlinear support vector machine based on Gao Si kernel function is chosen as the final classifier. The parameters of SVM are optimized by grid search method and 3-fold cross validation method. The penalty parameter is 0.054409 and the kernel parameter is 1. One general classifier was trained, the accuracy rate was 99.999, and 17 comparative classifiers were all reduced, but the overall accuracy remained above 99.9%. The evaluation criterion of recognition level is given, that is, the degree of contribution to accuracy, and the index value of each feature is calculated, among which the index value of chaotic feature is the largest. The results show that the feature extraction method and pattern recognition strategy used in this paper are correct, the two indexes can be used to evaluate the features, and the problem of DC fault arc detection is essentially a chaotic identification problem. The research in this paper enriches the characteristic types of DC fault arc, and gives the evaluation criteria for feature validity.
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM501.2

【相似文献】

相关期刊论文 前10条

1 李建基;;故障电弧情况下的人身和设备防护[J];华通技术;2004年02期

2 蓝会立;张认成;;基于混沌的故障电弧早期弧声检测方法研究[J];计算机测量与控制;2010年12期

3 仲启树;张认成;陈建阳;;基于混沌理论的故障电弧检测方法研究[J];黎明职业大学学报;2011年03期

4 孙鹏;秦猛;;采用波形比较法的串联故障电弧快速诊断技术[J];低压电器;2013年20期

5 印永嘉;陈洪亮;;关于检测低压故障电弧的初步研究[J];实验室研究与探索;2007年08期

6 杨艺;董爱华;付永丽;;低压故障电弧检测概述[J];低压电器;2009年05期

7 吕辉;董爱华;;基于信息融合的配电箱故障电弧在线检测[J];煤矿机械;2009年11期

8 邹云峰;吴为麟;李智勇;;基于自组织映射神经网络的低压故障电弧聚类分析[J];仪器仪表学报;2010年03期

9 孙鹏;郑志成;闫荣妮;高翔;;采用小波熵的串联型故障电弧检测方法[J];中国电机工程学报;2010年S1期

10 窦甜华;段培永;段晨旭;石嘉川;;一种建筑物低压供配电线路故障电弧检测新方法[J];微计算机信息;2011年03期

相关会议论文 前4条

1 徐贞华;裴小青;;基于支持向量机的低压故障电弧识别方法[A];2011第十六届全国自动化技术与应用学术年会专辑[C];2011年

2 董爱华;谷彬;;低压配电开关故障电弧检测技术的发展趋势[A];第九届全国信息获取与处理学术会议论文集Ⅰ[C];2011年

3 刘振国;孙鹏;;基于电流波形比较法诊断故障电弧的可靠性分析研究[A];第十一届沈阳科学学术年会暨中国汽车产业集聚区发展与合作论坛论文集(信息科学与工程技术分册)[C];2014年

4 陈征;;浅谈故障电弧防护技术在国内电气安全方面的应用前景[A];中国职业安全健康协会2008年学术年会论文集[C];2008年

相关重要报纸文章 前1条

1 鲁涛 天津市鸿远电气设备有限公司总工程师;杜绝电力火灾 造福人类文明[N];中国建设报;2013年

相关硕士学位论文 前10条

1 董荣刚;故障电弧诊断技术的研究[D];沈阳工业大学;2009年

2 郭家稳;故障电弧模式识别方法的研究[D];沈阳工业大学;2013年

3 张磊;故障电弧的识别及防护方法的研究[D];青岛理工大学;2015年

4 倪侃;故障电弧电信号模拟技术的研究与实现[D];温州大学;2015年

5 高源;光伏系统直流故障电弧的特征检测与防治策略[D];复旦大学;2014年

6 姜晨;基于物联网的室内用电安全智能监控系统[D];杭州电子科技大学;2015年

7 王仕岩;故障电弧检测及其直流固态功率控制器的研究[D];天津大学;2014年

8 孔林娟;基于突变理论的低压故障电弧检测方法研究[D];河南理工大学;2015年

9 梁柱;故障电弧检测装置的研究与设计[D];湖南大学;2016年

10 邓海平;低压电气线路故障电弧监测系统的设计[D];湖南大学;2016年



本文编号:2271148

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2271148.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户30053***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com