电动汽车用无刷直流电机控制技术研究
[Abstract]:Electric vehicles have the characteristics of clean and pollution-free, diversified energy sources, high energy efficiency, and easy to realize intelligent management, which can solve a series of problems such as energy, environment and traffic caused by fuel vehicles. Therefore, electric vehicle has become a research hotspot all over the world. Electric vehicle technology in China is still in its infancy, all key technologies need to be studied and solved. Motor and its control technology is one of the key technologies of electric vehicle, which is the first problem to be solved in the research and development of electric vehicle. In this paper, the research object is brushless DC motor, and the control system is designed to make the motor run smoothly and reduce its fluctuation and noise. Firstly, the basic structure of DC brushless motor is analyzed in this paper. According to the mathematical modeling, combined with the application requirement and application range of electric vehicle motor, the simulation model is established in the MATLAB/Simulink simulation platform. The advanced PID algorithm is applied to the established simulation model. Finally, experiments show that the advanced PID algorithm can effectively improve the stability and robustness of the system. On the basis of the completion of the paper. The main work and conclusions are as follows: (1) the application of radial basis function neural network (PID) in brushless DC motor control is simulated by using MATLAB. It is proved that radial basis function neural network (PID) is superior to simple PID in control performance. Obviously, in the aspect of dynamic index, the overshoot is obviously reduced, the frequency of oscillation, the adjustment time and the rising time are shortened. In the aspect of steady-state performance, the change of adjusting time is not obvious. It is proved that the radial basis function neural network PID is superior to the simple PID control performance. (2) Freescale's MC56F801X series chips are used as the core of the main control circuit, and the DRV8301 chip is used in the drive circuit. The hardware foundation of the brushless DC motor control system is composed. In software, the main program and interrupt program of the system are compiled by using the platform CCS,. Finally, the validity of the above method is verified by the combination of software and hardware. (3) the experiment proves that the method is effective. The control strategy of brushless DC motor presented in this paper is correct and feasible. The hardware of the control system is simple, the reliability and robustness of the system are improved, and the control effect is good. The work in this paper provides a certain theoretical reference and practical engineering method for the wide application of brushless DC motor.
【学位授予单位】:河北科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM33;U469.72
【参考文献】
相关期刊论文 前10条
1 邓元望;曾俊;高洋;郑潮雄;;BLDCM自调整比例因子模糊控制系统的建模及仿真[J];微电机;2016年01期
2 刘慧博;王静;吴彦合;;无刷直流电机模糊自适应PID控制研究与仿真[J];控制工程;2014年04期
3 赵一衡;顾伟康;陈亚彬;曹翔;;无刷直流电机转子位置检测方法综述[J];机械研究与应用;2014年02期
4 王志春;宋吉庆;孙建国;边长安;;永磁无刷直流电机无位置传感器控制方法研究[J];工业控制计算机;2014年03期
5 张洪帅;王平;韩邦成;;基于模糊PI模型参考自适应的高速永磁同步电机转子位置检测[J];中国电机工程学报;2014年12期
6 辛斌;陈杰;彭志红;;智能优化控制:概述与展望[J];自动化学报;2013年11期
7 石坚;李铁才;;一种消除无刷直流电动机换相转矩脉动的PWM调制策略[J];中国电机工程学报;2012年24期
8 任晶莹;姚绪梁;蔡晶;赵云凯;;基于神经网络控制器的直流无刷电动机控制研究[J];农机化研究;2012年06期
9 朱颖合;薛凌云;黄伟;;基于自组织调整因子的模糊PID控制器设计[J];系统仿真学报;2011年12期
10 徐丽丽;何志琴;马凯;;无刷直流电机新型控制方案的仿真研究[J];工业控制计算机;2011年05期
相关硕士学位论文 前7条
1 徐承爱;无刷直流电机智能控制策略的研究与仿真[D];广东工业大学;2015年
2 赵朋成;无刷直流电机的无位置传感器控制技术研究[D];华南理工大学;2014年
3 陈锟;无刷直流电机智能直接转矩控制研究[D];昆明理工大学;2013年
4 邹月海;基于模糊控制的永磁无刷直流电机调速系统研究[D];哈尔滨工程大学;2009年
5 包晓明;基于DSP的无刷直流电机模糊PI控制系统研究[D];江苏大学;2007年
6 戴莹;基于BP神经网络的无刷直流电机PID控制方法的研究[D];合肥工业大学;2007年
7 李志强;基于RBF神经网络在线辨识的永磁无刷直流电机单神经元自适应PID控制[D];天津大学;2005年
,本文编号:2271269
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2271269.html