百万超超临界机组汽轮机抽汽回热系统能效评价与诊断的研究
[Abstract]:The core and difficulty of energy saving optimization of steam turbine extraction recuperation system lies in the determination of the benchmark state of energy efficiency index of extraction steam recovery system. The complex boundary conditions and the coupling problem between energy efficiency indexes have brought great challenges to the optimization of energy conservation of steam turbine extraction heat recovery system. At present, the reference value of the key energy efficiency index of steam turbine extraction recuperation system is usually determined only by the design value, the calculation value under off-condition or the thermal test value, and each method has its limitations. With the change of unit operating condition and equipment performance state, the reference value can not match the actual operation state of the extraction steam recovery system, so the operation guidance is greatly restricted, and the real cause of the reduction of energy efficiency level can not be found. The data mining method based on the massive historical data of steam turbine extraction recuperation system can well match the actual operating state of the unit, so it can determine the actual energy efficiency index reference state of the extraction regenerative system under the target working condition. In order to solve the problem of variable and complex boundary conditions, multiple coupled energy efficiency indexes and different indexes in data mining of extraction steam recuperation system. In this paper, the data mining method based on k-means clustering is used to extract the actual energy efficiency standard state of the extraction regenerative system under the target working condition. But the datum state of energy efficiency index based on data mining is affected by the operation boundary condition and the actual equipment state, which mainly reflects the operating level of the operator, but does not reflect the standard state of the equipment performance under the target working condition. Therefore, according to the actual situation of the extraction heat recovery system, this paper modifies the energy efficiency index which can reflect the equipment performance by further constructing the benchmark state model of the equipment performance index. Thus, the reference state of the energy efficiency index of the whole steam turbine recovery system is obtained, and the consumption difference factor analysis of the key energy efficiency index is completed. At the same time, based on mechanism and Ebislon simulation modeling method, the standard value and consumption factor of end difference and feed water temperature are verified, which provides the basis for energy consumption analysis and energy efficiency diagnosis of steam turbine recovery system under different working conditions. Finally, based on the research of the energy efficiency benchmark state of the extraction steam recovery system, the energy efficiency analysis, evaluation and diagnosis system of the extraction steam recovery system are designed and studied. The main energy efficiency indexes affecting the energy consumption of the recovery system of a 1000MW steam turbine are found through the analysis of the consumption difference factor. The optimization knowledge base based on the energy efficiency index is used to guide the optimization and adjustment of the energy efficiency index. Finally, the purpose of improving the energy efficiency of the extraction steam recuperator system is achieved.
【学位授予单位】:华北电力大学(北京)
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM621.3
【参考文献】
相关期刊论文 前10条
1 王宁玲;杨勇平;杨志平;;多变边界条件下火电机组能耗基准状态诊断[J];中国电机工程学报;2013年26期
2 杨勇平;杨志平;徐钢;王宁玲;;中国火力发电能耗状况及展望[J];中国电机工程学报;2013年23期
3 陆松;;热力学分析在锅炉系统中的应用[J];中小企业管理与科技(上旬刊);2013年02期
4 杨志平;杨勇平;王宁玲;;1000MW汽轮机缸效率能耗敏度分析[J];中国电机工程学报;2012年26期
5 李慧君;高丽莎;;火力发电厂加热器端差应达值的确定[J];汽轮机技术;2012年02期
6 于淑梅;刘佳琪;常澍平;郭江龙;;回热加热器变工况端差基准值研究[J];发电设备;2010年03期
7 李娜;黄孝彬;田志强;隋丽颖;;生产过程数据稳定性判断的一种方法[J];华电技术;2010年01期
8 牛成林;刘吉臻;马永光;李建强;;基于增量数据挖掘的氧量最优值确定[J];中国电机工程学报;2009年35期
9 周小力;杨慧慈;唐佳明;;模糊综合评价法在烟气脱硫技术选型中的应用[J];计算机与应用化学;2008年03期
10 余愚;孙海山;蒋永华;;液压系统齿轮泵故障树分析[J];机床与液压;2007年09期
相关会议论文 前1条
1 冯春晖;陈彦桥;刘金琨;;数据挖掘技术在火电机组运行参数优化中的应用[A];中国自动化学会控制理论专业委员会B卷[C];2011年
相关博士学位论文 前5条
1 冉鹏;基于动态数据挖掘的电站热力系统运行优化方法研究[D];华北电力大学;2012年
2 王宁玲;基于数据挖掘的大型燃煤发电机组节能诊断优化理论与方法研究[D];华北电力大学(北京);2011年
3 牛成林;增量数据挖掘及其在电站运行优化中的理论研究及应用[D];华北电力大学(北京);2010年
4 王惠杰;基于混合模型的机组状态重构及运行优化研究[D];华北电力大学(河北);2009年
5 李建强;基于数据挖掘的电站运行优化理论研究与应用[D];华北电力大学(河北);2006年
相关硕士学位论文 前5条
1 王晓璐;火电机组能效评价体系探究[D];华北电力大学;2012年
2 严亘晖;火电厂热工过程的预测控制方法研究[D];浙江大学;2011年
3 李宗山;机组经济运行模式数据挖掘系统的研究与开发[D];华北电力大学(北京);2011年
4 郑西西;基于关联规则的火电厂优化目标值确定的研究[D];华北电力大学;2011年
5 吕冰;企业能源审计与可再生能源利用[D];天津大学;2008年
,本文编号:2274177
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2274177.html