基于大数据技术的用电行为分析关键技术研究
[Abstract]:With the establishment of the cooperative working mechanism of operation and distribution integration and the opening of the distribution data, the electricity consumption data of the electric customers can be associated with the data of the customers' files, payment and so on. The customer's electricity consumption data is implicit in the customer's electricity behavior characteristic. It can help the power grid to understand the customer's individualized and differentiated service demand by digging these data deeply and studying the customer's type. So the grid company can further expand the depth and breadth of the service, and provide data support for the future DSM policy formulation. Firstly, based on big data technology, the external and internal data sources of electrical behavior analysis are determined, and the mass data storage technology and mass data preprocessing technology are analyzed. The key technologies of electrical behavior analysis are studied, including clustering algorithm, optimal clustering evaluation algorithm, date matching algorithm, curve similarity measurement algorithm and so on. Thirdly, the construction scheme of power consumption analysis model is built, the modeling idea of power consumption analysis model is described in detail, and the characteristics and behavior of power consumption of main network are studied. Then combining the power consumption mode of the main network, the paper studies the power consumption behavior of the massive customers under the main network mode, and then uses the pattern matching technology to match the power consumption mode of the main network and the massive customers under this mode, and establishes the matching relationship between the historical peak cutting and filling valley. And through the empirical study to verify the electricity analysis model. Finally, the system architecture design, system function design, system database design, and the achievement of the system are described. The analysis and management software of power consumption behavior can accurately analyze the power consumption behavior of customers, which is helpful for power companies to guide users to use electricity for personal intelligence, and to improve the management level of energy efficiency on the demand side of power grid.
【学位授予单位】:华北电力大学(北京)
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP311.13;TM714;TM732
【参考文献】
相关期刊论文 前10条
1 张蕾;崔志坤;李井泉;白涛;;改进K-means模型在电力系统用户行为分析中的应用[J];无线电工程;2017年03期
2 王欢;李红辉;张骏温;;改进K-means聚类的云任务调度算法[J];计算机与现代化;2017年02期
3 陈鹏伟;陶顺;肖湘宁;李璐;张剑;;短时间尺度用电行为相关性分析网络模型[J];电力系统自动化;2017年03期
4 刘云霞;;基于动态时间规整的面板数据聚类方法研究及应用[J];统计研究;2016年11期
5 张素洁;赵怀慈;;最优聚类个数和初始聚类中心点选取算法研究[J];计算机应用研究;2017年06期
6 庄绪强;;基于云计算技术的用户用电智能分析技术研究[J];自动化与仪器仪表;2016年02期
7 戴月明;张朋;吴定会;;基于密度检测的EM算法[J];计算机应用研究;2016年09期
8 伍育红;;聚类算法综述[J];计算机科学;2015年S1期
9 王继业;季知祥;史梦洁;黄复鹏;朱朝阳;张东霞;;智能配用电大数据需求分析与应用研究[J];中国电机工程学报;2015年08期
10 余冬梅;;基于障碍约束的空间聚类算法综述[J];计算机系统应用;2015年01期
相关硕士学位论文 前3条
1 陈旭;基于神经网络的电力系统短期负荷预测研究[D];华中科技大学;2015年
2 潘家腾;基于Hive数据仓库的用户行为模型研究[D];北京邮电大学;2015年
3 冀明;聚类分析在电力客户关系管理中的应用研究[D];华北电力大学;2012年
,本文编号:2278025
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2278025.html