分布式光伏发电功率预测及优化配置研究
[Abstract]:With the attention of the international community on energy, ecology, climate and other issues, vigorously developing renewable energy has become an important measure to deal with these problems. Solar energy, as a member of renewable energy, has developed rapidly in recent years. Distributed photovoltaic, as the next step of the photovoltaic industry, has the characteristics of flexible application, energy saving, high energy utilization and so on. It is an important part of the distribution link of smart grid. Because of the intermittent and unstable characteristics of photovoltaic output, with the increase of permeability of distributed photovoltaic in distribution network, the structure and operation mode of distribution network will change, in order to reduce the influence on distribution network. It is necessary to predict the short term power of distributed photovoltaic, and to optimize the position and capacity of distributed photovoltaic in distribution network. Therefore, this paper builds a distributed PV short-term power prediction model, forecasts the collected samples and makes error analysis of the results, and establishes a multi-objective optimization model for the distributed photovoltaic optimal configuration. Using the improved multi-objective differential evolution algorithm, the distributed photovoltaic system in standard distribution network is optimized. The main contents are as follows: (1) the composition and classification of photovoltaic power generation system are studied, and the simulation of theoretical model and practical data is carried out. From the point of view of affecting the output of photovoltaic power, the characteristics of photovoltaic power generation are studied, and the input of photovoltaic prediction model is determined. The influence of distributed photovoltaic grid connection on distribution network is analyzed from power flow, power supply reliability, power quality and so on. And the optimization objectives and constraints of the multi-objective optimization model are selected. (2) the basic principle of wavelet transform is studied. The collected photovoltaic power sequence is preprocessed by wavelet transform to obtain the sequence components of the power. The prediction models are established respectively. The principle and structure of ESN neural network are analyzed, and the training method of ESN neural network is clarified. According to the collected photovoltaic data, the structure, input and output parameters of the prediction model are determined, and the WT ESN photovoltaic power prediction model is built. (3) on the matlab platform, the sunny and overcast samples are selected. Four prediction models, ESN,BP,WT ESN and WT BP, are used to predict the output of distributed photovoltaic, and three kinds of error indexes are used to evaluate the prediction results. The simulation results show that compared with the other three models, the prediction curve of, WT ESN is more stable, the trend of change is closer to the actual curve, and the three kinds of error evaluation indexes are all the best. The validity and superiority of WT ESN prediction model are verified. (4) A multi-objective optimization model including distributed photovoltaic cost and operation cost, distribution network active power loss, voltage stability index (VSI) and various constraints is established. The mathematical description of multi-objective optimization problem is introduced. In this paper, the principle and flow of differential evolution algorithm are studied. In view of the traditional differential evolution algorithm relying too much on empirical control parameters, adaptive strategy is integrated into the algorithm. Combined with the concept of Pareto dominance, an improved multi-objective differential evolutionary algorithm (MOSADE. (5) is proposed for the standard distribution of IEEE-33 nodes. The distributed photovoltaic optimal configuration is studied on the matlab platform. The simulation results show that, compared with DE and LDWPSO algorithms, SADE maintains population diversity in the early stage of the algorithm, and improves the convergence speed in the later stage of the algorithm. In the aspect of global optimization, MOSADE is used to effectively configure 1-10 groups of DPV. The results show that the reasonable allocation of DPV can effectively enhance the voltage level of distribution network, reduce the loss of active power network, increase the income of generation, and verify the rationality and validity of the multi-objective optimization model and MOSADE algorithm.
【学位授予单位】:太原理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM615
【参考文献】
相关期刊论文 前10条
1 王继东;宋智林;冉冉;;基于改进支持向量机算法的光伏发电短期功率滚动预测[J];电力系统及其自动化学报;2016年11期
2 丁明;鲍玉莹;毕锐;;应用改进马尔科夫链的光伏出力时间序列模拟[J];电网技术;2016年02期
3 陈海东;庄平;夏建矿;代文章;逯洋;高奇;陈涛;;基于改进萤火虫算法的分布式电源优化配置[J];电力系统保护与控制;2016年01期
4 彭春华;于蓉;孙惠娟;;基于K-均值聚类多场景时序特性分析的分布式电源多目标规划[J];电力自动化设备;2015年10期
5 叶林;陈政;赵永宁;朱倩雯;;基于遗传算法—模糊径向基神经网络的光伏发电功率预测模型[J];电力系统自动化;2015年16期
6 黄付顺;王倩;何美华;陈前宇;;基于综合敏感性分析的时序分布式电源规划[J];电力系统保护与控制;2015年10期
7 陈志宝;丁杰;周海;程序;朱想;;地基云图结合径向基函数人工神经网络的光伏功率超短期预测模型[J];中国电机工程学报;2015年03期
8 罗建春;晁勤;罗洪;冉鸿;杨杰;罗庆;阿里努尔·阿木提;;基于LVQ-GA-BP神经网络光伏电站出力短期预测[J];电力系统保护与控制;2014年13期
9 周文越;吕飞鹏;廖小君;;基于人工蜂群算法的分布式电源规划[J];电力系统及其自动化学报;2014年05期
10 茆美琴;龚文剑;张榴晨;曹雨;徐海波;;基于EEMD-SVM方法的光伏电站短期出力预测[J];中国电机工程学报;2013年34期
相关会议论文 前1条
1 代燕杰;孙春艳;王晓泳;刘潇;杨杰;;基于用户型分布式光伏发电并网系统的测试与分析[A];2013年中国电机工程学会年会论文集[C];2013年
相关博士学位论文 前6条
1 程杉;含分布式电源的配电网多目标优化问题研究[D];重庆大学;2013年
2 徐瑞东;光伏发电系统运行理论与关键技术研究[D];中国矿业大学;2012年
3 王建民;基于回声状态网络的非线性时间序列预测方法研究[D];哈尔滨工业大学;2011年
4 吴亮红;多目标动态差分进化算法及其应用研究[D];湖南大学;2011年
5 苏海军;量子衍生和禁忌微分进化算法研究[D];上海交通大学;2010年
6 韩军;内燃机的非平稳信号分析方法及其噪声源小波识别技术的研究[D];天津大学;2004年
相关硕士学位论文 前10条
1 韩宝珠;基于小波分析和在线极限学习机的滚动轴承故障诊断方法研究[D];北京交通大学;2016年
2 秦俊举;光伏发电功率预测方法的研究[D];西华大学;2014年
3 杨德全;基于神经网络的光伏发电系统发电功率预测[D];华北电力大学;2014年
4 刘惠;网络安全设备联动系统日志预处理的研究与设计[D];华北电力大学;2014年
5 任甜;单相光伏并网发电系统的控制策略研究[D];中南大学;2013年
6 于安兴;风电场短期风电功率预测研究[D];华东理工大学;2013年
7 王世丹;含分布式电源的配电系统无功优化技术研究[D];北京交通大学;2012年
8 廖春平;基于改进遗传算法行为参数优化的多机器人编队控制[D];中南大学;2012年
9 王源山;考虑分布式电源的配电系统可靠性研究[D];天津大学;2010年
10 李红巧;基于图像奇异性的多尺度变换图像去噪方法的研究[D];江西科技师范学院;2010年
,本文编号:2283510
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2283510.html