基于RCM的风电机组维修决策技术研究
[Abstract]:Wind power generation technology is a kind of clean energy power generation technology. Nowadays, the economy of our country continues to develop at a high speed, resources are gradually scarce, and environmental problems are becoming more and more serious under the background of rapid development. However, due to the poor operating environment of wind turbine, the low manufacturing level of domestic wind turbine in the early stage, and the immature operation and maintenance management technology of wind farm enterprises, the failure rate of wind power equipment is relatively high. At present, the methods of equipment maintenance and inspection in domestic wind farm are based on the maintenance manual provided by the equipment manufacturer, and do not take into account the actual operation of the wind farm, so there are some problems such as improper selection of maintenance strategy, excessive maintenance and lack of maintenance. At present, the main maintenance means of wind farm is ex post maintenance. For the important equipment, it is difficult to control the failure consequence and will cause serious damage to the equipment. Aiming at the above problems, this paper introduces the reliability centered maintenance (RCM) concept into the wind power field, takes the wind turbine as the research object, and develops the maintenance decision method based on RCM. The main work of this paper is as follows: (1) system analysis of wind turbine based on RCM: the implementation process of RCM method in wind farm is introduced. By analyzing the composition and function of the equipment in the wind turbine, dividing the wind turbine system, sorting out the equipment data of the wind turbine, running and maintaining instructions and historical fault data, the functional block diagram and the task reliability block diagram of each system are drawn. Complete failure mode and impact analysis. Fault tree analysis of key equipment and quantitative analysis are carried out. (2) Establishment of life analysis model for key equipment of wind turbine: discuss the problems to be considered in the establishment of life analysis model of wind turbine. The life model of key equipment is established by Weibull distribution model, and the model is judged by fitting. According to the model to calculate the failure rate, reliability, failure probability density, average failure time and other related reliability indicators. (3) maintenance decision and periodic maintenance cycle determination: through the decision process in RCM, The maintenance decision is made on the fault mode of the equipment in the wind turbine, and the failure mode of the equipment is determined by the Weibull distribution failure rate model, which belongs to the failure mode in RCM. By considering the consequences of failure and the maintenance cost of different maintenance modes, the maintenance method is determined. Finally, the periodic maintenance or replacement interval is determined for the failure with periodic maintenance.
【学位授予单位】:华北电力大学(北京)
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM315
【参考文献】
相关期刊论文 前10条
1 杨培林;徐凯;薛冲冲;贾焕如;;基于模型检测的机电系统FMEA研究[J];机械工程学报;2016年16期
2 奚蔚;黄甫;赵剑军;;疲劳寿命分布参数估计方法对比[J];江苏科技信息;2016年15期
3 张琛;郭盛;高伟;邱逢涛;杨涛;李友良;;基于可靠度的风电机组机会维修策略[J];广东电力;2016年02期
4 张鹏;许力;赵世伟;;飞机系统维修方式确定与维修间隔优化研究[J];计算机仿真;2016年01期
5 沈安慰;郭基联;王卓健;;竞争性故障模型可靠性评估的非参数估计方法[J];航空动力学报;2016年01期
6 刘双跃;张天麒;夏川;;冶金设备故障率分布的两重威布尔模型建立及应用[J];冶金设备;2015年05期
7 杨丽梅;蔡长亮;徐楠;;基于模糊综合评判与FMEA的数控机床故障分析[J];机床与液压;2015年15期
8 安宗文;许洁;刘波;;基于无故障数据的风电机组齿轮箱可靠度预测[J];兰州理工大学学报;2015年02期
9 李练兵;张秀云;王志华;王志强;;故障树和BAM神经网络在光伏并网故障诊断中的应用[J];电工技术学报;2015年02期
10 程军伟;刘旭刚;董宏国;朱志雄;;车辆装备故障率模型[J];军事交通学院学报;2015年01期
相关会议论文 前2条
1 黄超群;蒋仁言;;风电机组的运维管理研究现状与展望[A];2015年全国机械行业可靠性技术学术交流会暨第五届可靠性工程分会第二次全体委员大会论文集[C];2015年
2 张恩广;;状态监测有效提升风能发电传动系统可靠性[A];中国农机工业协会风能设备分会《风能产业》(2013年第12期)[C];2013年
相关博士学位论文 前3条
1 常昊;风电工程全寿命期风险管理模型及信息系统研究[D];华北电力大学;2014年
2 张谦;新能源风电运营不确定性收益管理方法及信息系统研究[D];华北电力大学;2014年
3 蒋泽甫;风电转换系统可靠性评估及其薄弱环节辨识[D];重庆大学;2012年
相关硕士学位论文 前10条
1 余斌;基于RCM的设备维护策略研究[D];合肥工业大学;2015年
2 潘其云;基于RCM的风电机组维修周期决策[D];华北电力大学;2015年
3 王磊;基于威布尔分布的油田机采井故障率研究[D];东北石油大学;2014年
4 徐贤东;基于RCM理论的核电设备重要度及效益评估研究[D];南华大学;2014年
5 佟宝玲;考虑多状态性的风电机组主传动链可用度分析[D];兰州理工大学;2013年
6 梁勇;风电机组主轴轴承的疲劳寿命预测[D];兰州理工大学;2013年
7 王冠雄;加工中心早期故障期及偶然故障期可靠性分析[D];大连理工大学;2014年
8 彭超;拟合优度检验统计量的研究及在质量控制中的应用[D];燕山大学;2012年
9 王鹤;基于RCM的数控机床预防性维修策略研究[D];吉林大学;2012年
10 孟繁超;大型风力发电机组故障分析及齿轮箱温度监测系统研究[D];华北电力大学;2012年
,本文编号:2292662
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2292662.html