PMSM反馈线性化-滑模直接转矩控制
发布时间:2021-03-29 13:19
永磁同步电动机由于具备体积较小,工作效率高等优势而广为应用,直接转矩控制是电机使用的主要控制方式,传统直接转矩控制一般使用开关表和滞环比较器来实现,然而滞环比较器不能完成转矩大小的区分,因此转矩脉动较大的问题一直存在于这种控制方式,本文针对面装式永磁同步电机,着重探究滞环比较方法产生转矩脉动较大的原因,最终实现转矩脉动的降低。首先对直接转矩控制形式的研究现状进行阐述,并在此基础上对目前的研究发展趋势进行讨论,并建立了永磁同步电机的数学模型,探究了滞环比较方法,建立了simulink仿真结构图,得出仿真结果,分析产生转矩脉动的原因,原因主要是因为滞环比较器不能区分转矩偏差的大小。根据永磁同步电机的非线性特征和数学模型的特点,在分析了产生转矩脉动原因的基础上,本文设计了一种输入-输出反馈线性化方法,该方法是以微分几何为基础理论,对电机的非线性耦合部分进行线性化处理,在利用极点配置理论,设计线性控制器,文中分析了反馈线性化的理论,推导了输入-输出关系式,建立了simulink模型,进行了仿真,仿真结果表明与滞环比较相比,反馈线性化方法可以明显的降低电机的转矩脉动。在电机参数发生变化时,滑模控...
【文章来源】:沈阳工业大学辽宁省
【文章页数】:73 页
【学位级别】:硕士
【部分图文】:
相静止变2相静止空间位置关系图
第2章传统永磁同步电机直接转矩控制11最终求得Clark变换为:iDiQ=231-12-120√32-√32iAiBiC(2.17)2.1.3Park变换及推导根据图2.2空间几何关系不难得出:图2.22相静止变2相旋转空间位置关系图Fig.2.22Phasestatictransformation2phaserotationspatialpositionchartid=iDcosφ+iQsinφ(2.18)iq=-iDsinφ+iQcosφ(2.19)不难得出转换矩阵:idiq=cosφsinφ-sinφcosφiDiQ(2.20)Park逆变换:iDiQ=cosφ-sinφsinφcosφidiq(2.21)2.1.4永磁电机各参数数学方程定子电压矢量方程:us=Rsis+dφsdt(2.22)定子磁链矢量方程:φs=Lsis+φf(2.23)其中,为三相绕组的磁链,、R、分别为三相绕组的相电压,电阻和电流;为三相绕组的电感,为转子永磁体产生的磁常机械运动方程:Jdωmdt=Te-TL-Bωm(2.24)式中:为电机的机械角速度;J为转动惯量;B为阻尼系数;为负载转矩。为了方便后期控制器的设计,很多情况下选择同步选择坐标系d-q的数学模型,
第2章传统永磁同步电机直接转矩控制13的运动轨迹能够维持圆形是磁链运动轨迹长时间不会发生变化的前提,根据图2.3可以知道,设定为常值的情况下,将与的幅值之间存在的差值会在滞环上下宽带内波动。定子开关电压矢量向前向后各拓展30°,最终形成60°的扇形,从而将空间复平面分为六个独立的区域,使用数字对其标记,为1-6,与电压控制矢量的序号相同,例如扇区1就是电压矢量所在的空间,之所以将坐标平面分成6个区间是因为,这样能便于对电压开关矢量进行合理的选择。图2.3电压矢量图Fig.2.3Voltagevectorchart图2.3给出了定子磁链φs和转矩Te的偏差范围,如图2.3所示当磁链运动至G1点时,磁链处于扇区1,此时选择矢量和是不合适的,其原因是距离G1过近,对磁链的控制作用过于微弱,而相对于G1的距离又过于远,对于磁链的控制作用过于强烈,余下可供选择的电压矢量有、、、,运动轨迹上,前四个开关电压矢量分别能够在其切向和轴向两个方向产生投影,磁链和转矩受到开关电压矢量的影响可以通过这些投影分析判断。以G1点为例可以发现,、、、,可以分别表示出他们产生的作用,下标表示“+”号表示增加,符号“-”表示减少。最终根据磁链和转矩滞环比较器输出信号,对最佳空间电压矢量进行计算与选择,当磁链出现负偏差时(给定值小于检测值),此时需要减小磁链,磁链滞环比较器输出-1,此时和,磁链均呈现出减小趋势,转矩滞环比较器输出1,说明此时需要增加转矩,故选择,反之,选择矢量。表2.1电压矢量选择表Tab.2.1Voltagevectorselectiontableφt12345611-1-11-1
【参考文献】:
期刊论文
[1]一种表面式永磁同步电机有限状态集模型预测直接转矩控制[J]. 李耀华,刘洋,孟祥臻. 电机与控制学报. 2020(08)
[2]电动车用永磁同步电机的双模糊直接转矩控制[J]. 丁铎,卢秀和. 科技创新与应用. 2020(01)
[3]永磁同步电机平滑非奇异终端滑模控制[J]. 王宇野. 闽南师范大学学报(自然科学版). 2019(04)
[4]永磁直线同步电机自适应非线性滑模控制[J]. 赵希梅,刘超,朱国昕. 电机与控制学报. 2020(07)
[5]一种优化定子齿抑制PMSM转矩脉动方法[J]. 张高峰,朱一昕,钱新. 轻工机械. 2019(06)
[6]基于改进滑模控制的五相永磁同步电机仿真[J]. 刘超,曹兆锦,牛绿原. 农业装备与车辆工程. 2019(12)
[7]永磁同步电机滑模调速系统新型趋近律控制[J]. 霍召晗,许鸣珠. 电机与控制应用. 2019(12)
[8]一种基于扰动观测器的永磁同步伺服电机复合滑模控制方法[J]. 李龙飞,刘侃,李娟,杨士洁. 控制与信息技术. 2019(06)
[9]一种永磁同步电机双滑模无传感器控制方法[J]. 蒋林,刘梁鸿,韩璐,邱存勇. 电力电子技术. 2019(11)
[10]基于新型积分自适应滑模控制策略的永磁同步电机控制[J]. 柯希彪,郭琳,袁训锋,陈垚,徐晓龙,张商州,王换民. 电机与控制应用. 2019(11)
博士论文
[1]异步电机占空比调制的直接转矩控制算法研究[D]. 李政学.北京科技大学 2015
[2]矿用电机车的永磁同步电机控制关键技术研究[D]. 郑昌陆.上海大学 2013
硕士论文
[1]基于SVPWM的永磁同步电机无差拍直接转矩控制[D]. 冯烨.沈阳工业大学 2019
[2]永磁同步电机直接转矩控制的MTPA控制系统研究[D]. 刘宏宇.哈尔滨理工大学 2017
[3]基于电压型磁链观测器的异步电机直接转矩预测控制[D]. 周志康.湖南大学 2016
[4]交流提升机直接转矩控制技术研究[D]. 陈哲.兰州理工大学 2011
本文编号:3107617
【文章来源】:沈阳工业大学辽宁省
【文章页数】:73 页
【学位级别】:硕士
【部分图文】:
相静止变2相静止空间位置关系图
第2章传统永磁同步电机直接转矩控制11最终求得Clark变换为:iDiQ=231-12-120√32-√32iAiBiC(2.17)2.1.3Park变换及推导根据图2.2空间几何关系不难得出:图2.22相静止变2相旋转空间位置关系图Fig.2.22Phasestatictransformation2phaserotationspatialpositionchartid=iDcosφ+iQsinφ(2.18)iq=-iDsinφ+iQcosφ(2.19)不难得出转换矩阵:idiq=cosφsinφ-sinφcosφiDiQ(2.20)Park逆变换:iDiQ=cosφ-sinφsinφcosφidiq(2.21)2.1.4永磁电机各参数数学方程定子电压矢量方程:us=Rsis+dφsdt(2.22)定子磁链矢量方程:φs=Lsis+φf(2.23)其中,为三相绕组的磁链,、R、分别为三相绕组的相电压,电阻和电流;为三相绕组的电感,为转子永磁体产生的磁常机械运动方程:Jdωmdt=Te-TL-Bωm(2.24)式中:为电机的机械角速度;J为转动惯量;B为阻尼系数;为负载转矩。为了方便后期控制器的设计,很多情况下选择同步选择坐标系d-q的数学模型,
第2章传统永磁同步电机直接转矩控制13的运动轨迹能够维持圆形是磁链运动轨迹长时间不会发生变化的前提,根据图2.3可以知道,设定为常值的情况下,将与的幅值之间存在的差值会在滞环上下宽带内波动。定子开关电压矢量向前向后各拓展30°,最终形成60°的扇形,从而将空间复平面分为六个独立的区域,使用数字对其标记,为1-6,与电压控制矢量的序号相同,例如扇区1就是电压矢量所在的空间,之所以将坐标平面分成6个区间是因为,这样能便于对电压开关矢量进行合理的选择。图2.3电压矢量图Fig.2.3Voltagevectorchart图2.3给出了定子磁链φs和转矩Te的偏差范围,如图2.3所示当磁链运动至G1点时,磁链处于扇区1,此时选择矢量和是不合适的,其原因是距离G1过近,对磁链的控制作用过于微弱,而相对于G1的距离又过于远,对于磁链的控制作用过于强烈,余下可供选择的电压矢量有、、、,运动轨迹上,前四个开关电压矢量分别能够在其切向和轴向两个方向产生投影,磁链和转矩受到开关电压矢量的影响可以通过这些投影分析判断。以G1点为例可以发现,、、、,可以分别表示出他们产生的作用,下标表示“+”号表示增加,符号“-”表示减少。最终根据磁链和转矩滞环比较器输出信号,对最佳空间电压矢量进行计算与选择,当磁链出现负偏差时(给定值小于检测值),此时需要减小磁链,磁链滞环比较器输出-1,此时和,磁链均呈现出减小趋势,转矩滞环比较器输出1,说明此时需要增加转矩,故选择,反之,选择矢量。表2.1电压矢量选择表Tab.2.1Voltagevectorselectiontableφt12345611-1-11-1
【参考文献】:
期刊论文
[1]一种表面式永磁同步电机有限状态集模型预测直接转矩控制[J]. 李耀华,刘洋,孟祥臻. 电机与控制学报. 2020(08)
[2]电动车用永磁同步电机的双模糊直接转矩控制[J]. 丁铎,卢秀和. 科技创新与应用. 2020(01)
[3]永磁同步电机平滑非奇异终端滑模控制[J]. 王宇野. 闽南师范大学学报(自然科学版). 2019(04)
[4]永磁直线同步电机自适应非线性滑模控制[J]. 赵希梅,刘超,朱国昕. 电机与控制学报. 2020(07)
[5]一种优化定子齿抑制PMSM转矩脉动方法[J]. 张高峰,朱一昕,钱新. 轻工机械. 2019(06)
[6]基于改进滑模控制的五相永磁同步电机仿真[J]. 刘超,曹兆锦,牛绿原. 农业装备与车辆工程. 2019(12)
[7]永磁同步电机滑模调速系统新型趋近律控制[J]. 霍召晗,许鸣珠. 电机与控制应用. 2019(12)
[8]一种基于扰动观测器的永磁同步伺服电机复合滑模控制方法[J]. 李龙飞,刘侃,李娟,杨士洁. 控制与信息技术. 2019(06)
[9]一种永磁同步电机双滑模无传感器控制方法[J]. 蒋林,刘梁鸿,韩璐,邱存勇. 电力电子技术. 2019(11)
[10]基于新型积分自适应滑模控制策略的永磁同步电机控制[J]. 柯希彪,郭琳,袁训锋,陈垚,徐晓龙,张商州,王换民. 电机与控制应用. 2019(11)
博士论文
[1]异步电机占空比调制的直接转矩控制算法研究[D]. 李政学.北京科技大学 2015
[2]矿用电机车的永磁同步电机控制关键技术研究[D]. 郑昌陆.上海大学 2013
硕士论文
[1]基于SVPWM的永磁同步电机无差拍直接转矩控制[D]. 冯烨.沈阳工业大学 2019
[2]永磁同步电机直接转矩控制的MTPA控制系统研究[D]. 刘宏宇.哈尔滨理工大学 2017
[3]基于电压型磁链观测器的异步电机直接转矩预测控制[D]. 周志康.湖南大学 2016
[4]交流提升机直接转矩控制技术研究[D]. 陈哲.兰州理工大学 2011
本文编号:3107617
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/3107617.html