并网光伏系统中使用FRT控制技术的短期电压稳定性分析
发布时间:2021-11-10 00:17
为了满足能源需求,最合适的方法之一是将可再生能源渗透到当前的电力系统中。通过集成可再生分布式发电机(DG)(例如太阳能系统),风力涡轮机在当今非常出名。最近,太阳能因光伏组件成本的降低、技术的进步、及各国对该领域的支持而广受赞誉。但将DG大规模集成到电力系统时,也存在一些缺点。其中一点是由于高渗透率导致的电力系统可靠性。电压稳定性是关键的问题之一。通过考虑不同国家预先定义的低压穿越(LVRT)要求,本文主要对电网集成光伏系统中的短期电压稳定性进行了分析。在论文的第一部分中,本文中开发了一种适用于考虑故障穿越(FRT)控制技术的短期电压稳定性分析的光伏发电系统模型,并且设计了一种太阳能电池模型。其目的是保证光伏系统在电网侧发生任何故障或电压骤降期间穿越系统时都可以保持连接状态。电压稳定性的分析主要是为了检查故障期间负载注入下的系统性能。电压稳定性与负载动态的关系更大,因此在电压稳定性分析中应考虑不同的负载特性。论文第二部分的主要内容是研究光伏发电系统并网过程中的特性和没有故障或电压骤降时的系统性能。本文所开发的策略还将执行最大功率点跟踪(MPPT)功能,该功能在DC-DC转换器中实现。当...
【文章来源】:哈尔滨工业大学黑龙江省 211工程院校 985工程院校
【文章页数】:81 页
【学位级别】:硕士
【文章目录】:
摘要
Abstract
Chapter1:Introduction
1.1.Solar energy-An alternative energy Source
1.2.Background and significance of topic
1.2.1.Background
1.2.2.Significance of topic
1.3.Objective of thesis
1.4.Literature review
1.5.Outline of the thesis
Chapter2:Modeling of Photovoltaic array,characteristics analysis and overview to grid-tied PV systems
2.1.Introduction
2.2.Photovoltaic cell-A brief history
2.3.Types of Photovoltaic cells
2.4.PV Generator
2.5.Modeling of PV array
2.5.1.PV cell mathematical model(real/ practical cell scenario)
2.5.2.MATLAB/Simulink model of Photovoltaic cell
2.5.3.Analysis of characteristics of the photovoltaic array
2.6.Maximum Power Tracking Control(MPPT)
2.6.1.Perturb and Observe Methods
2.6.2.Incremental Conductance
2.6.3.Fuzzy Logic Control
2.7.Overview to grid-tied PV system
2.7.1.Photovoltaic energy generation network
2.7.2.Grid-Connoted PV System and its components
2.7.3.Three-phase voltage source inverter with filters
2.7.4.Two-Stage inverter topology
2.8.Structure and Topologies of grid-connected PV inverters
2.9.Summary
Chapter3:Fundamentals of grid-connected PV control systems,grid integration challenges and factors effecting Voltage Stability
3.1.Introduction
3.2.Fundamentals Grid-connected PV system
3.3.Standards for grid interfacing
3.3.1.Grid codes
3.3.2.Fault ride-though(FRT)technique
3.4.Integration challenges
3.4.1.Influence of PV services on generation sides
3.4.2.Effect on transmission and sub-transmission networks
3.4.3.Impact on distribution networks
3.5.Types of PV systems
3.6.Performance of grid-connected Photovoltaic systems
3.6.1.Specifications for Grid-connected PV efficiency analysis
3.7.Power system stability analysis with high PV penetration
3.7.1.Categorization of stability of power systems
3.8.Grid faults
3.8.1.Simulink test system for fault analysis
3.8.2.Simulation results
3.9.Conclusion
Chapter4:Short-term Voltage stability analysis on grid-connected PV System
4.1.Introduction
4.2.Two-Stage grid-connected PV system model
4.3.Voltage Stability an overview
4.3.1.Long-term voltage stability
4.3.2.Short-term(ST)voltage stability
4.4.Dynamic behavior of PV System on Short-term voltage stability
4.4.1.Load Modelling
4.4.2.Induction motor(IM)
4.5.Test System
4.6.Dynamic voltage support for Low voltage ride-through(LVRT)
4.6.1.Voltage Sag or Dip/Fault Detection Methods
4.6.2.Simulink established fault detection model using equation(4.11)
4.6.3.DC-Link voltage control
4.7.Simulation Results for Short-term Voltage stability analysis
4.8.Summary
4.9.Conclusions and Future Work
References
攻读硕士学位期间发表的论文及其它成果
Acknowledgement
本文编号:3486187
【文章来源】:哈尔滨工业大学黑龙江省 211工程院校 985工程院校
【文章页数】:81 页
【学位级别】:硕士
【文章目录】:
摘要
Abstract
Chapter1:Introduction
1.1.Solar energy-An alternative energy Source
1.2.Background and significance of topic
1.2.1.Background
1.2.2.Significance of topic
1.3.Objective of thesis
1.4.Literature review
1.5.Outline of the thesis
Chapter2:Modeling of Photovoltaic array,characteristics analysis and overview to grid-tied PV systems
2.1.Introduction
2.2.Photovoltaic cell-A brief history
2.3.Types of Photovoltaic cells
2.4.PV Generator
2.5.Modeling of PV array
2.5.1.PV cell mathematical model(real/ practical cell scenario)
2.5.2.MATLAB/Simulink model of Photovoltaic cell
2.5.3.Analysis of characteristics of the photovoltaic array
2.6.Maximum Power Tracking Control(MPPT)
2.6.1.Perturb and Observe Methods
2.6.2.Incremental Conductance
2.6.3.Fuzzy Logic Control
2.7.Overview to grid-tied PV system
2.7.1.Photovoltaic energy generation network
2.7.2.Grid-Connoted PV System and its components
2.7.3.Three-phase voltage source inverter with filters
2.7.4.Two-Stage inverter topology
2.8.Structure and Topologies of grid-connected PV inverters
2.9.Summary
Chapter3:Fundamentals of grid-connected PV control systems,grid integration challenges and factors effecting Voltage Stability
3.1.Introduction
3.2.Fundamentals Grid-connected PV system
3.3.Standards for grid interfacing
3.3.1.Grid codes
3.3.2.Fault ride-though(FRT)technique
3.4.Integration challenges
3.4.1.Influence of PV services on generation sides
3.4.2.Effect on transmission and sub-transmission networks
3.4.3.Impact on distribution networks
3.5.Types of PV systems
3.6.Performance of grid-connected Photovoltaic systems
3.6.1.Specifications for Grid-connected PV efficiency analysis
3.7.Power system stability analysis with high PV penetration
3.7.1.Categorization of stability of power systems
3.8.Grid faults
3.8.1.Simulink test system for fault analysis
3.8.2.Simulation results
3.9.Conclusion
Chapter4:Short-term Voltage stability analysis on grid-connected PV System
4.1.Introduction
4.2.Two-Stage grid-connected PV system model
4.3.Voltage Stability an overview
4.3.1.Long-term voltage stability
4.3.2.Short-term(ST)voltage stability
4.4.Dynamic behavior of PV System on Short-term voltage stability
4.4.1.Load Modelling
4.4.2.Induction motor(IM)
4.5.Test System
4.6.Dynamic voltage support for Low voltage ride-through(LVRT)
4.6.1.Voltage Sag or Dip/Fault Detection Methods
4.6.2.Simulink established fault detection model using equation(4.11)
4.6.3.DC-Link voltage control
4.7.Simulation Results for Short-term Voltage stability analysis
4.8.Summary
4.9.Conclusions and Future Work
References
攻读硕士学位期间发表的论文及其它成果
Acknowledgement
本文编号:3486187
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/3486187.html