Anion Exchange Membranes Structure Control and Performance E
发布时间:2022-01-09 11:03
为满足废水处理、碱性燃料电池、气体分离等工艺的要求,制备性能优良的新型离子交换膜显得尤为重要。本论文针对离子交换膜的应用领域,制备出不同用途的新型阴离子交换膜,包括聚合物骨架结构的选择和功能基团结构的调控。论文的主要内容是制备新型阴离子交换膜并应用于扩散透析,电渗析和碱性燃料电池过程。参考其不同的性质,操作参数和条件判断膜的性能,并且与在各领域的商业膜进行比较。通过水吸收、线性膨胀比、离子交换容量、化学稳定性、碱稳定性、热稳定性和阴离子交换膜的机械稳定性来判断膜的物理和电化学性质。本文还考察了参数模型、多价络合效应以及操作参数等因素对扩散透析过程的影响情况。本论文设计合成了一种新型阴离子交换膜(QUDAP AEMs),并通过扩散透析进行酸回收,并通过扫描电子显微镜(SEM)、傅立叶变换红外(FTIR)、动态力学分析(DMA)和热重分析(TGA)来进行表征。与商用膜DF-120相比,制备所得的AEM具有良好的质子透析系数和分离因子。此外,文中还提出了工艺参数模型,根据扩散系数和进料量的变化来预测通过扩散透析的酸回收性能。将实验结果与模型预测结果进行比较,结果表明所开发的模型与实验结果具有...
【文章来源】:中国科学技术大学安徽省 211工程院校 985工程院校
【文章页数】:181 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
Chapter 1 Introduction and Background
1.1 General Description
1.2. Fundamental Concept of Ion Exchange Membrane
1.3. Anion Exchange Membrane
1.3.1. Anion Exchange Membranes with New Cationic Head Groups
1.3.2. Anion Exchange Membranes with New Polymer Architecture
1.4. Application of Anion Exchange Membranes
1.4.1. Diffusion Dialysis (DD)
1.4.1.1. Fundamental Concept of Diffusion Dialysis
1.4.1.2. Models for Diffusion Dialysis
1.4.1.3. Experimental Setups for Diffusion Dialysis
1.4.2. Electrodialysis
1.4.2.1. Basic Principles of Electrodialysis
1.4.2.2. Models and Experimental Setups for Electrodialysis Proces
1.4.3. Anion Exchange Membrane Fuel Cell
1.4.3.1. The Principles of the Anion Exchange Membrane as Polymer Electrolyte
1.4.3.2. Desired Properties of AEMFCs
1.4.3.3. Transport Mechanism in AEMFCs
1.4.4. The other Applications of Anion Exchange Membrane
1.5. Scope and Objective of the Thesis
Chapter 2 Experimental and Characterization
2.1. Materials and Reagents
2.2. General Methods of Membranes Preparation
2.3. Characterizations and Methods
2.3.1. Polymer Characterization
2.3.2. Water Uptake (WU)
2.3.3. Static Water Contact Angle (WCA)
2.3.4. Mechanical and Thermal Analysis
2.3.5. Fluorescein Isothiocyanate Analysis (FITC)
2.3.6. Scanning Electron Microscopy (SEM)
2.3.7. Atomic Force Microscopy (AFM)
2.3.8. Ion Exchange Capacity (IEC)
2.3.9. Linear Swelling Ratio (LER)
2.3.10. Fixed Charge Concentration
2.3.11. Transport Number
2.3.12. Current-Voltage Curve
2.3.13. Membrane Area Resistance and Limiting Current Density
2.3.14. Chemical Stability and Alkaline Stability
2.3.15. Experimental and Full Factorial Design
2.3.16. Activation Energy
2.3.17. Diffusion Dialysis
2.3.18. Electrodialysis
2.3.19. Hydroxide Conductivity
2.3.20. Methanol Permeability
Chapter 3 PVA-QUDAP based anion exchange membranes for diffusion dialysis
3.1. Introduction
3.2. Experimental
3.2.1. Synthesis of 2-Dimethylamino Methyl pyridine
3.2.2. Synthesis of QUDAP
3.2.3 Fabrication of the QUDAP/PVA Membrane
3.3. Results and Discussion
3.3.1. Fourier Transform Infrared Spectroscopy
3.3.2. Ion Exchange Capacity and Water Uptake
3.3.3. Membrane Morphology
3.3.4. Mechanical Stability
3.3.5. Thermal Stability
3.3.6. Diffusion Dialysis Results
3.3.7. Theoretical Analysis in Diffusion Dialysis
3.4. Conclusion
Chapter 4 Augmenting acid recovery from different systems by novel Q-DAN anionexchange membranes via diffusion dialysis
4.1. Introduction
4.2. Experimental
4.2.1. Synthesis of Quaternized DAN
4.2.2. Membrane preparation
4.3. Results and Discussion
4.3.1. Structural and Morphological Characterizations of Q-DAN AEMs
4.3.2. Water Uptake and Ion Exchange Capacity (IEC)
4.3.3. Thermal and Mechanical Stabilities
4.3.4. Diffusion Dialysis Process
4.3.4.1. HCl and FeCl_2 System
4.3.4.2. Representative Multivalent Metal ions-HCl Systems
4.4. Conclusion
Chapter 5 Investigation of key process parameters in acid recovery for diffusion dialysisusing novel (MDMH-QPPO) anion exchange membranes
5.1. Introduction
5.2. Experimental
5.2.1. Synthesis of Methyl 6-(dimethylamino) Hexanoate
5.2.2. Synthesis of Methyl 6-(dimethylamino) Hexanoate
5.2.3. Membrane Preparation
5.2.4. Plan of Experiments
5.3. Results and Discussion
5.3.1. ~1H NMR Analysis
5.3.2. FTIR Analysis for Membrane Structure
5.3.3. Morphologies of MDMH-QPPO AEMs
5.3.4. Ion Exchange Capacity (IEC), Water Uptake (WU) and Swelling Ratio (LER)
5.3.5. Membrane Mechanical and Thermal Stabilities
5.3.6. Diffusion Dialysis Performance
5.3.7. Investigation of Dominant Factors Order in Diffusion Dialysis
5.4. Conclusion
Chapter 6 Anion exchange membranes with hydrophobic chains for monovalent-divalentseparation in electrodialysis
6.1. Introduction
6.2. Experimental
6.2.1. Synthesis of 2-(N,N-Dimethylamino) Methylpyridine
6.2.2. Synthesis of QPP, QHP, and QUP
6.2.3. Membrane Preparation
6.3. Results and Discussion
6.3.1. NMR Analysis
6.3.2. IEC, WU, and LSR
6.3.3. Mechanical Strength
6.3.4. SEM and AFM Morphology
6.3.5. Transport Number
6.3.6. Current-Voltage Curve
6.3.7. Mono/Multi-valent Anion Selectivity
6.3.7.1. Effect of IEC on Selectivity
6.3.7.2. Effect of Hydrophobic Side Chains on Selectivity
6.3.7.3. Operational Stability
6.4. Conclusion
Chapter 7 Alkaline stable anion exchange membranes for fuel cells
7.1. Introduction
7.2. Experimental
7.2.1. Synthesis of Dipicolylamine
7.2.2. Synthesis of N-methyl Dipicolylamine (MDPA)
7.2.3. Membrane Fabrication
7.3. Results and Discussion
7.3.1. ~1H NMR, FTIR Analysis for Membrane Structure
7.3.2. Electrochemical properties relationship
7.3.3. Morphology
7.3.4. Mechanical behavior
7.3.5. Thermal behavior
7.3.6. Alkaline stability
7.3.7. Hydroxide conductivity and activation energy
7.3.8. Methanol permeability
7.4. Conclusion
Chapter 8 Overall Conclusion and Future Perspectives
8.1. Overall Conclusion
8.2. Future Perspectives
References
Acknowledgement
List of Publications
本文编号:3578592
【文章来源】:中国科学技术大学安徽省 211工程院校 985工程院校
【文章页数】:181 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
Chapter 1 Introduction and Background
1.1 General Description
1.2. Fundamental Concept of Ion Exchange Membrane
1.3. Anion Exchange Membrane
1.3.1. Anion Exchange Membranes with New Cationic Head Groups
1.3.2. Anion Exchange Membranes with New Polymer Architecture
1.4. Application of Anion Exchange Membranes
1.4.1. Diffusion Dialysis (DD)
1.4.1.1. Fundamental Concept of Diffusion Dialysis
1.4.1.2. Models for Diffusion Dialysis
1.4.1.3. Experimental Setups for Diffusion Dialysis
1.4.2. Electrodialysis
1.4.2.1. Basic Principles of Electrodialysis
1.4.2.2. Models and Experimental Setups for Electrodialysis Proces
1.4.3. Anion Exchange Membrane Fuel Cell
1.4.3.1. The Principles of the Anion Exchange Membrane as Polymer Electrolyte
1.4.3.2. Desired Properties of AEMFCs
1.4.3.3. Transport Mechanism in AEMFCs
1.4.4. The other Applications of Anion Exchange Membrane
1.5. Scope and Objective of the Thesis
Chapter 2 Experimental and Characterization
2.1. Materials and Reagents
2.2. General Methods of Membranes Preparation
2.3. Characterizations and Methods
2.3.1. Polymer Characterization
2.3.2. Water Uptake (WU)
2.3.3. Static Water Contact Angle (WCA)
2.3.4. Mechanical and Thermal Analysis
2.3.5. Fluorescein Isothiocyanate Analysis (FITC)
2.3.6. Scanning Electron Microscopy (SEM)
2.3.7. Atomic Force Microscopy (AFM)
2.3.8. Ion Exchange Capacity (IEC)
2.3.9. Linear Swelling Ratio (LER)
2.3.10. Fixed Charge Concentration
2.3.11. Transport Number
2.3.12. Current-Voltage Curve
2.3.13. Membrane Area Resistance and Limiting Current Density
2.3.14. Chemical Stability and Alkaline Stability
2.3.15. Experimental and Full Factorial Design
2.3.16. Activation Energy
2.3.17. Diffusion Dialysis
2.3.18. Electrodialysis
2.3.19. Hydroxide Conductivity
2.3.20. Methanol Permeability
Chapter 3 PVA-QUDAP based anion exchange membranes for diffusion dialysis
3.1. Introduction
3.2. Experimental
3.2.1. Synthesis of 2-Dimethylamino Methyl pyridine
3.2.2. Synthesis of QUDAP
3.2.3 Fabrication of the QUDAP/PVA Membrane
3.3. Results and Discussion
3.3.1. Fourier Transform Infrared Spectroscopy
3.3.2. Ion Exchange Capacity and Water Uptake
3.3.3. Membrane Morphology
3.3.4. Mechanical Stability
3.3.5. Thermal Stability
3.3.6. Diffusion Dialysis Results
3.3.7. Theoretical Analysis in Diffusion Dialysis
3.4. Conclusion
Chapter 4 Augmenting acid recovery from different systems by novel Q-DAN anionexchange membranes via diffusion dialysis
4.1. Introduction
4.2. Experimental
4.2.1. Synthesis of Quaternized DAN
4.2.2. Membrane preparation
4.3. Results and Discussion
4.3.1. Structural and Morphological Characterizations of Q-DAN AEMs
4.3.2. Water Uptake and Ion Exchange Capacity (IEC)
4.3.3. Thermal and Mechanical Stabilities
4.3.4. Diffusion Dialysis Process
4.3.4.1. HCl and FeCl_2 System
4.3.4.2. Representative Multivalent Metal ions-HCl Systems
4.4. Conclusion
Chapter 5 Investigation of key process parameters in acid recovery for diffusion dialysisusing novel (MDMH-QPPO) anion exchange membranes
5.1. Introduction
5.2. Experimental
5.2.1. Synthesis of Methyl 6-(dimethylamino) Hexanoate
5.2.2. Synthesis of Methyl 6-(dimethylamino) Hexanoate
5.2.3. Membrane Preparation
5.2.4. Plan of Experiments
5.3. Results and Discussion
5.3.1. ~1H NMR Analysis
5.3.2. FTIR Analysis for Membrane Structure
5.3.3. Morphologies of MDMH-QPPO AEMs
5.3.4. Ion Exchange Capacity (IEC), Water Uptake (WU) and Swelling Ratio (LER)
5.3.5. Membrane Mechanical and Thermal Stabilities
5.3.6. Diffusion Dialysis Performance
5.3.7. Investigation of Dominant Factors Order in Diffusion Dialysis
5.4. Conclusion
Chapter 6 Anion exchange membranes with hydrophobic chains for monovalent-divalentseparation in electrodialysis
6.1. Introduction
6.2. Experimental
6.2.1. Synthesis of 2-(N,N-Dimethylamino) Methylpyridine
6.2.2. Synthesis of QPP, QHP, and QUP
6.2.3. Membrane Preparation
6.3. Results and Discussion
6.3.1. NMR Analysis
6.3.2. IEC, WU, and LSR
6.3.3. Mechanical Strength
6.3.4. SEM and AFM Morphology
6.3.5. Transport Number
6.3.6. Current-Voltage Curve
6.3.7. Mono/Multi-valent Anion Selectivity
6.3.7.1. Effect of IEC on Selectivity
6.3.7.2. Effect of Hydrophobic Side Chains on Selectivity
6.3.7.3. Operational Stability
6.4. Conclusion
Chapter 7 Alkaline stable anion exchange membranes for fuel cells
7.1. Introduction
7.2. Experimental
7.2.1. Synthesis of Dipicolylamine
7.2.2. Synthesis of N-methyl Dipicolylamine (MDPA)
7.2.3. Membrane Fabrication
7.3. Results and Discussion
7.3.1. ~1H NMR, FTIR Analysis for Membrane Structure
7.3.2. Electrochemical properties relationship
7.3.3. Morphology
7.3.4. Mechanical behavior
7.3.5. Thermal behavior
7.3.6. Alkaline stability
7.3.7. Hydroxide conductivity and activation energy
7.3.8. Methanol permeability
7.4. Conclusion
Chapter 8 Overall Conclusion and Future Perspectives
8.1. Overall Conclusion
8.2. Future Perspectives
References
Acknowledgement
List of Publications
本文编号:3578592
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/3578592.html