基于电压源换流器的稳定器阻尼电力系统低频振荡研究
发布时间:2022-08-09 15:09
电压源换流器(VSC)是交直流缓和系统中最重要的动态组件。VSC与传统电网的交互作用可能会产生低频振荡(LFO)问题,将会降低电力系统的稳定性和可靠性。众所周知,电力系统低频振荡的主要原因是电力系统缺乏足够的阻尼,主要由以下几个原因:(1)大功率长距离传输,(2)大电网的弱连接,(3)高增益快速调节的AVR。此外,这些低频振荡也是提高电力系统动态特性的主要障碍。如果阻尼不足,低频振荡不仅可能引发严重的故障,而且可能会导致电力系统崩溃。在电力系统中引入一种基于VSC控制的稳定器,可以提高电力系统的阻尼,能够较好地解决上述问题。本文通过采用模态分析法研究了基于VSC结构的稳定器与常规电网集成的问题,并提出一种适用于单机无穷大电力系统的方案。基于模态分析法的特征值计算,在电力系统中增加附加阻尼控制器,可以为电力系统提供正阻尼来抑制低频振荡,而其安装位置和配置参数也将影响稳定器的性能。为了获得更好的控制性能,本文采用粒子群优化算法,以参与因子为基础,选取合适的目标函数,来求取稳定器的最佳安装位置和最优配置参数。其中,目标函数是在系统工作点线性化处理后所得系统模型的临界模式对应的阻尼比。最终,时...
【文章页数】:74 页
【学位级别】:硕士
【文章目录】:
Abstract
摘要
Chapter 1 Introduction
1.1 Research Problem
1.2 Tasks
1.3 Thesis Overview
Chapter 2 Literature Review
2.1 Types of Low-Frequency Oscillations
2.1.1 Local Machine/Unit System Oscillation
2.1.2 Inter/Wide Area Oscillation
2.2 Methods Used to Analysis Power System Oscillations
2.2.1 Damping Torque Analysis
2.2.2 Modal Analysis/ Eigenvalue Analysis
2.2.2.1 Eigenvalues
2.2.2.2 System Stability and its Eigenvalue
2.2.2.3 Participation Factor
2.3 FACTS based Stabilizers
2.4 PSSs Design to Mitigate LFOs
2.5 Adaptive and Intelligent-based PSS
2.5.1 Fuzzy Logic-based PSS
2.5.2 Neural Network based PSS
2.5.3 Evolutionary Algorithm-based PSS
2.6 Power System Oscillation in HVDC System
2.6.1 HVDC Damping Controllers
2.6.2 PSS type HVDC Damping Controller
2.7 The Impact of Wind Farms in Power System Oscillations
2.7.1 Oscillations in a Power System with Wind Farms
2.7.1.1 Power System with Fixed Speed Wind Turbines
2.7.1.2 Power System with Variable Speed Wind Turbines
2.8 Control of Wind Farms for Enhancing the Damping of Power System Oscillations
2.9 Small Signal Stability of the VSC-based DC/AC PowerSystem
Chapter 3 Research Methodology and System Modeling
3.1 Research Objectives
3.2 Linearized Model of SMIB Install with VSC
3.3 Linearized Model of SMIB Install with VSC and PSS
3.4 Particle Swarm Optimization
3.4.1 Objective Function of PSO
Chapter 4 Results Analysis and Discussion
4.1 Case 1: SMIB Install with VSC without any Stabilizer
4.2 Case 2:PSS Stabilizer added in VSC Controller
4.3 Case 3:PSS Stabilizer added in AVR System
4.4 Case 4:PSS Stabilizer added in VSC and AVR
Chapter 5 Conclusion
FUTURE RECOMMENDATIONS
Appendix
References
致谢
本文编号:3672781
【文章页数】:74 页
【学位级别】:硕士
【文章目录】:
Abstract
摘要
Chapter 1 Introduction
1.1 Research Problem
1.2 Tasks
1.3 Thesis Overview
Chapter 2 Literature Review
2.1 Types of Low-Frequency Oscillations
2.1.1 Local Machine/Unit System Oscillation
2.1.2 Inter/Wide Area Oscillation
2.2 Methods Used to Analysis Power System Oscillations
2.2.1 Damping Torque Analysis
2.2.2 Modal Analysis/ Eigenvalue Analysis
2.2.2.1 Eigenvalues
2.2.2.2 System Stability and its Eigenvalue
2.2.2.3 Participation Factor
2.3 FACTS based Stabilizers
2.4 PSSs Design to Mitigate LFOs
2.5 Adaptive and Intelligent-based PSS
2.5.1 Fuzzy Logic-based PSS
2.5.2 Neural Network based PSS
2.5.3 Evolutionary Algorithm-based PSS
2.6 Power System Oscillation in HVDC System
2.6.1 HVDC Damping Controllers
2.6.2 PSS type HVDC Damping Controller
2.7 The Impact of Wind Farms in Power System Oscillations
2.7.1 Oscillations in a Power System with Wind Farms
2.7.1.1 Power System with Fixed Speed Wind Turbines
2.7.1.2 Power System with Variable Speed Wind Turbines
2.8 Control of Wind Farms for Enhancing the Damping of Power System Oscillations
2.9 Small Signal Stability of the VSC-based DC/AC PowerSystem
Chapter 3 Research Methodology and System Modeling
3.1 Research Objectives
3.2 Linearized Model of SMIB Install with VSC
3.3 Linearized Model of SMIB Install with VSC and PSS
3.4 Particle Swarm Optimization
3.4.1 Objective Function of PSO
Chapter 4 Results Analysis and Discussion
4.1 Case 1: SMIB Install with VSC without any Stabilizer
4.2 Case 2:PSS Stabilizer added in VSC Controller
4.3 Case 3:PSS Stabilizer added in AVR System
4.4 Case 4:PSS Stabilizer added in VSC and AVR
Chapter 5 Conclusion
FUTURE RECOMMENDATIONS
Appendix
References
致谢
本文编号:3672781
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/3672781.html