基于ANSYS的磁饱和式可控电抗器分析
发布时间:2023-04-02 22:06
磁控并联电抗器(Magnetically Controlled Shunt Reactor,MCSR)铁心同时受到交流和直流两种激励作用,而工作在多种复杂的激励条件下。尽管近年来MCSR因其在电力系统中的广泛应用而备受关注,但由于MCSR本质上的复杂性,需要采用工程仿真工具对其进行分析。ANSYS Maxwell(ANSYS)是一个工业领先的高性能仿真软件,它使用有限元分析来解决和分析许多工程问题。它可用于分析磁场、电场、结构等学科。ANSYS仿真方法不仅简单方便,而且在精度、时间和成本效率等方面具有突出的优势。本论文的主要研究内容是:对磁控并联电抗器的主铁芯结构、铁磁材料、磁化特性和运行特性进行了研究;分析了抽头比、触发角和磁饱和度对控制特性的影响;利用ANSYS建立了MCSR的三维结构模型,并计算了不同直流偏磁激励下绕组的磁场和电流波形,并与理论分析和数学推导进行了比较。算例结果表明:MCSRs在一个周期内左右磁芯柱间交替磁化和退磁,即两侧的磁阀在该周期内交替饱和和非饱和;无论磁阀的饱和程度如何,在整个可调范围内,大截面铁心都不会出现饱和现象;工作电流与触发角的关系近似为余弦曲线。...
【文章页数】:72 页
【学位级别】:硕士
【文章目录】:
摘要
Abstract
1 Introduction
1.1 General Overview
1.2 Objectives of the Research Work
1.3 Significance of the Research Work
1.4 Organization of the Research Work
2 Introduction to Theory and Calculation of MCSR
2.1 Core Structure and Working Principle of MCSR
2.1.1 Core Structure Configuration
2.1.2 Basic Working Principle
2.2 MCSR Ferromagnetic Materials
2.3 Magnetic Valve of MCSR
2.3.1 Characteristics of Magnetic Valve
2.3.2 Magnetic Circuit and Equations of Magnetic Valve
2.4 Magnetic Field Analysis of MCSR Under Excitation
2.5 Volt-Ampere Characteristics of MCSR
2.6 Harmonic Characteristics of MCSR
2.7 Equivalent Circuit of MCSR
2.7.1 Equivalent Electric Circuit
2.7.2 Relationship between Control Angle and Magnetic Saturation
2.7.3 Relationship between Control Angle and Working Current
2.8 Chapter Summary
3 Introduction to ANSYS Maxwell
3.1 Importance of Using ANSYS
3.2 Modeling Procedure for ANSYS
3.2.1 Creating the Geometric Model
3.2.2 Defining Material Properties
3.2.3 Adding Excitation
3.2.4 Assigning Boundary
3.2.5 Generating Meshing
3.2.6 Solution Type and Load Step Options
3.2.7 Post Processing the Results
3.3 Simulation and Results of MCSR
3.4 Chapter Summary
4 Calculation and Simulation Example of MCSR Prototype
4.1 Comparison and Analysis of Results
4.1.1 The Distribution of the Magnetic Field
4.1.2 Calculation and Simulation Results of control characteristics
4.1.3 Calculation and Simulation Results of Magnetic Saturation Degree
4.1.4 MCSR Harmonics and Time Difference
4.1.5 Calculation and Simulation Results of the Inductance
4.2 Chapter Summary
General Conclusion
Outlook
Acknowledgements
References
Appendix A
Appendix B
List of publications
本文编号:3780052
【文章页数】:72 页
【学位级别】:硕士
【文章目录】:
摘要
Abstract
1 Introduction
1.1 General Overview
1.2 Objectives of the Research Work
1.3 Significance of the Research Work
1.4 Organization of the Research Work
2 Introduction to Theory and Calculation of MCSR
2.1 Core Structure and Working Principle of MCSR
2.1.1 Core Structure Configuration
2.1.2 Basic Working Principle
2.2 MCSR Ferromagnetic Materials
2.3 Magnetic Valve of MCSR
2.3.1 Characteristics of Magnetic Valve
2.3.2 Magnetic Circuit and Equations of Magnetic Valve
2.4 Magnetic Field Analysis of MCSR Under Excitation
2.5 Volt-Ampere Characteristics of MCSR
2.6 Harmonic Characteristics of MCSR
2.7 Equivalent Circuit of MCSR
2.7.1 Equivalent Electric Circuit
2.7.2 Relationship between Control Angle and Magnetic Saturation
2.7.3 Relationship between Control Angle and Working Current
2.8 Chapter Summary
3 Introduction to ANSYS Maxwell
3.1 Importance of Using ANSYS
3.2 Modeling Procedure for ANSYS
3.2.1 Creating the Geometric Model
3.2.2 Defining Material Properties
3.2.3 Adding Excitation
3.2.4 Assigning Boundary
3.2.5 Generating Meshing
3.2.6 Solution Type and Load Step Options
3.2.7 Post Processing the Results
3.3 Simulation and Results of MCSR
3.4 Chapter Summary
4 Calculation and Simulation Example of MCSR Prototype
4.1 Comparison and Analysis of Results
4.1.1 The Distribution of the Magnetic Field
4.1.2 Calculation and Simulation Results of control characteristics
4.1.3 Calculation and Simulation Results of Magnetic Saturation Degree
4.1.4 MCSR Harmonics and Time Difference
4.1.5 Calculation and Simulation Results of the Inductance
4.2 Chapter Summary
General Conclusion
Outlook
Acknowledgements
References
Appendix A
Appendix B
List of publications
本文编号:3780052
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/3780052.html