氧化锰纳米结构基超级电容器电极材料研究
发布时间:2024-03-16 17:23
能源,对于人类来说一直是一个重要的问题。不断增长的人口和经济发展,提高了化石燃料的消耗,导致大量的温室气体排放、气候变化,造成环境问题。生产和储存不同类型能量的替代方式正在成为人类亟待完成的使命。可再生能源,因其低成本和环境友好特性是最具吸引力的方式之一。以可持续的方式利用可再生能源的关键问题是如何有效地储存能量并满足需求。因此,能源存储设备的重要性在最近得到了认可。随着便携式电子设备的发展,柔性电子产品吸引了人们的巨大兴趣。已经做出了许多努力来制造柔性装置,比如笔记本电脑、平板电脑、智能手机、可折叠显示器、人造电子皮肤、可弯曲的晶体管、电子文件和军事设备。电化学电容器(ECs)也被称为超级电容器,尤其是具有柔性电极的超级电容器,由于其独特的高功率密度特性、长寿命和优异的速率能力引起了极大的关注,满足下一代电子设备,尤其是可穿戴设备的具有更高能量和功率密度的薄、轻、灵活的要求。本研究的目的是通过简单的单步水热法,在不使用任何表面活性剂的情况下,合成用于超级电容器柔性电极的不同种类的锰氧化物纳米结构,例如纳米颗粒,纳米棒,纳米线,纳米片。并为超级电容器应用开发高效电极材料。锰氧化物主要集...
【文章页数】:120 页
【学位级别】:博士
【文章目录】:
Acknowledgement
Abstract
摘要
List of Abbreviations
1 Introduction
1.1 Objectives of dissertation
1.2 Structure of dissertation
1.3 Supercapacitors
1.4 Types of supercapacitors
1.5 Charge storage mechanism of supercapacitors
1.6 MnO2 as electrode materials for supercapacitors
1.7 Configurations of supercapacitors
1.7.1 Symmetric supercapacitor
1.7.2 Asymmetric supercapacitor
1.7.3 Hybrid supercapacitor
1.8 Electrolytes and separators for supercapacitors
1.9 Experimental Techniques
1.9.1 Synthesis methods
1.9.2 Hydrothermal Synthesis method
1.10 Characterization Techniques
1.10.1 X-ray Diffraction (XRD)
1.10.2 X-ray photoelectron spectroscopy (XPS)
1.10.3 FT-IR spectroscopy
1.10.4 Brunauer-Emmett-Teller (BET)
1.10.5 Scanning Electron Microscopy (SEM)
1.10.6 High-resolution electron microscopy (HRTEM)
1.11 Supercapacitor electrode fabrication and electrochemical measurements
1.11.1 Fabrication of supercapacitors electrode
1.11.2 Cyclic voltammetry (CV)
1.11.3 Galvanostatic charge/discharge (GCD)
1.12 Applications of supercapacitors
1.13 Motivations
1.14 Novelties of thesis
2 MnO2 nanorods forest on carbon textile as efficient electrode material for supercapacitors
2.1 Introduction
2.2 Experimental section
2.2.1 Chemicals and Materials
2.2.2 Hydrothermal synthesis of MnO2-NRF@CT
2.2.3 Characterization
2.2.4 Electrochemical measurements
2.3 Results and discussion
2.3.1 Structure Characterization
2.3.2 Morphological characterization
2.3.3 Electrochemical performance
2.4 Summary
3 Birnessite-type Cu0.45Mn0.55O2 nanosheets on flexible carbon textile for high-performance supercapacitors electrode
3.1 Introduction
3.2 Experimental Section
3.2.1 Chemical and Materials
3.2.2 Growth of Cu0.45Mn0.55O2 nanosheets on carbon textile(CMO-CT)
3.2.3 Characterization
3.2.4 Electrochemical measurements
3.3 Results and discussion
3.3.1 Structural characterization
3.3.2 Morphological characterization
3.3.3 Electrochemical performance
3.4 Summary
4 Controlled Size Mn3O4 Nanoparticles for Supercapacitor Applications
4.1 Introduction
4.2 Experimental Section
4.2.1 Chemical
4.2.2 Synthesis of Mn3O4 nanoparticles
4.2.3 Material Characterizations
4.2.4 Electrode preparation and electrochemical characterization
4.3 Results and Discussion
4.3.1 Structural analysis
4.3.2 Raman analysis
4.3.3 FE-SEM, HR-TEM and EDX analysis of the samples
4.3.4 Electrochemical performance
4.4 Summary
5 Reduced graphene oxide-Mn3O4 nanocomposite as efficient electrode material for supercapacitor
5.1 Introduction
5.2 Experimental Section
5.2.1 Synthesis of GO, rGO and rGO-Mn3O4
5.3 Characterization
5.3.1 Electrode preparation and electrochemical characterization
5.4 Results and discussion
5.5 Summary
6 Mn3O4 nanosheets decorated on flexible carbon textile as flexible supercapacitors electrode
6.1 Introduction
6.2 Experimental Section
6.2.1 Growth of Mn3O4@CF-NS
6.2.2 Characterization
6.2.3 Electrochemical characterization
6.3 Results and discussion
6.4 Summary
7 Conclusion and future perspective
7.1 Conclusion
7.2 Future Recommendations
References
Author's Curriculum Vitae
学位论文数据集
本文编号:3929872
【文章页数】:120 页
【学位级别】:博士
【文章目录】:
Acknowledgement
Abstract
摘要
List of Abbreviations
1 Introduction
1.1 Objectives of dissertation
1.2 Structure of dissertation
1.3 Supercapacitors
1.4 Types of supercapacitors
1.5 Charge storage mechanism of supercapacitors
1.6 MnO2 as electrode materials for supercapacitors
1.7 Configurations of supercapacitors
1.7.1 Symmetric supercapacitor
1.7.2 Asymmetric supercapacitor
1.7.3 Hybrid supercapacitor
1.8 Electrolytes and separators for supercapacitors
1.9 Experimental Techniques
1.9.1 Synthesis methods
1.9.2 Hydrothermal Synthesis method
1.10 Characterization Techniques
1.10.1 X-ray Diffraction (XRD)
1.10.2 X-ray photoelectron spectroscopy (XPS)
1.10.3 FT-IR spectroscopy
1.10.4 Brunauer-Emmett-Teller (BET)
1.10.5 Scanning Electron Microscopy (SEM)
1.10.6 High-resolution electron microscopy (HRTEM)
1.11 Supercapacitor electrode fabrication and electrochemical measurements
1.11.1 Fabrication of supercapacitors electrode
1.11.2 Cyclic voltammetry (CV)
1.11.3 Galvanostatic charge/discharge (GCD)
1.12 Applications of supercapacitors
1.13 Motivations
1.14 Novelties of thesis
2 MnO2 nanorods forest on carbon textile as efficient electrode material for supercapacitors
2.1 Introduction
2.2 Experimental section
2.2.1 Chemicals and Materials
2.2.2 Hydrothermal synthesis of MnO2-NRF@CT
2.2.3 Characterization
2.2.4 Electrochemical measurements
2.3 Results and discussion
2.3.1 Structure Characterization
2.3.2 Morphological characterization
2.3.3 Electrochemical performance
2.4 Summary
3 Birnessite-type Cu0.45Mn0.55O2 nanosheets on flexible carbon textile for high-performance supercapacitors electrode
3.1 Introduction
3.2 Experimental Section
3.2.1 Chemical and Materials
3.2.2 Growth of Cu0.45Mn0.55O2 nanosheets on carbon textile(CMO-CT)
3.2.3 Characterization
3.2.4 Electrochemical measurements
3.3 Results and discussion
3.3.1 Structural characterization
3.3.2 Morphological characterization
3.3.3 Electrochemical performance
3.4 Summary
4 Controlled Size Mn3O4 Nanoparticles for Supercapacitor Applications
4.1 Introduction
4.2 Experimental Section
4.2.1 Chemical
4.2.2 Synthesis of Mn3O4 nanoparticles
4.2.3 Material Characterizations
4.2.4 Electrode preparation and electrochemical characterization
4.3 Results and Discussion
4.3.1 Structural analysis
4.3.2 Raman analysis
4.3.3 FE-SEM, HR-TEM and EDX analysis of the samples
4.3.4 Electrochemical performance
4.4 Summary
5 Reduced graphene oxide-Mn3O4 nanocomposite as efficient electrode material for supercapacitor
5.1 Introduction
5.2 Experimental Section
5.2.1 Synthesis of GO, rGO and rGO-Mn3O4
5.3.1 Electrode preparation and electrochemical characterization
5.4 Results and discussion
5.5 Summary
6 Mn3O4 nanosheets decorated on flexible carbon textile as flexible supercapacitors electrode
6.1 Introduction
6.2 Experimental Section
6.2.1 Growth of Mn3O4@CF-NS
6.2.2 Characterization
6.2.3 Electrochemical characterization
6.3 Results and discussion
6.4 Summary
7 Conclusion and future perspective
7.1 Conclusion
7.2 Future Recommendations
References
Author's Curriculum Vitae
学位论文数据集
本文编号:3929872
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/3929872.html