当前位置:主页 > 科技论文 > 电气论文 >

基于布谷鸟搜索优化支持向量机的短期负荷预测

发布时间:2017-06-24 12:02

  本文关键词:基于布谷鸟搜索优化支持向量机的短期负荷预测,,由笔耕文化传播整理发布。


【摘要】:针对支持向量机(SVM)在短期负荷预测中,根据经验选取参数导致预测精度下降的问题,提出一种基于布谷鸟搜索算法(CSA)优化SVM的短期负荷预测新方法(CSA-SVM)。先以历史负荷、温度、湿度等属性构成训练样本集的输入向量作为SVM的输入,以负荷值作为输出,建立SVM预测模型;再根据训练误差,以CSA对SVM中惩罚因子和核参数进行寻优;最后,按照CSA寻优获得的最优参数建立基于CSA-SVM的预测模型并开展短期负荷预测。实际负荷数据试验显示,相较于SVM模型、粒子群(PSO)优化SVM模型、BP神经网络模型,CSA-SVM具有更高的预测精度,能够满足电力系统短期负荷预测精度需求。
【作者单位】: 东北电力大学电气工程学院;山东电力公司德州供电公司;山东电力公司菏泽供电公司;
【关键词】短期负荷预测 布谷鸟搜索算法 支持向量机 参数寻优
【基金】:国家高技术研究发展计划(863计划)(SS2014AA052502) 2016年吉林省科技发展计划项目(20160411003XH) 吉林省社科基金项目(2015A2) 吉林省教育厅"十三五"科技项目(吉教科合字[2016]第90号)
【分类号】:TP18;TM715
【正文快照】: 1引言电力系统负荷预测是根据历史负荷,综合其他影响因素对未来电力需求做预报的过程。其中,短期负荷预测作为电力部门调度和分配电能的依据,影响着电力系统的可靠和稳定运行[1]。因此,提高短期负荷预测精度具有重要意义。现有短期负荷预测方法可分为传统预测法和智能预测法[2

【相似文献】

中国期刊全文数据库 前10条

1 戴和彩;浅谈如皋电网的短期负荷预测[J];农村电气化;2001年05期

2 侯凯元,穆钢,杨右虹,惠永杰;地区电网短期负荷预测系统的研究[J];电力系统及其自动化学报;2001年05期

3 潘勇;短期负荷预测精度影响因素分析和对策[J];农村电气化;2003年05期

4 赵登福,吴娟,刘昱,张讲社,王锡凡;基于事例推理的短期负荷预测[J];西安交通大学学报;2003年06期

5 莫维仁,张伯明,孙宏斌,胡子珩,刘顺桂;扩展短期负荷预测的原理和方法[J];中国电机工程学报;2003年03期

6 吴江;张龙胜;;温度、人体舒适度对地区短期负荷预测的影响[J];上海电力;2003年03期

7 梁勤励,谢正宁,田自军;银南电网短期负荷预测[J];农村电气化;2004年07期

8 丁恰,卢建刚,钱玉妹,张剑,廖怀庆;一种实用的超短期负荷预测曲线外推方法[J];电力系统自动化;2004年16期

9 胡子珩;刘顺桂;邱利斌;朱成骐;张伯明;孙宏斌;;深圳电网智能化自动运行短期负荷预测系统[J];电网技术;2005年23期

10 徐进东,丁晓群,邓勇;基于相似日的线性外推短期负荷预测[J];继电器;2005年07期

中国重要会议论文全文数据库 前10条

1 侯广松;刘伟生;;适用于地区电网的短期负荷预测方法的研究[A];2005中国电机工程学会电力系统自动化专委会全国供用电管理自动化学术交流暨供用电管理自动化学科组第二届年会论文集[C];2005年

2 朱桂华;赖晓平;云昌钦;;在线短期负荷预测方法的研究与应用[A];1995年中国控制会议论文集(上)[C];1995年

3 杜欣慧;张岭;毕艳华;;采用自适应神经网络进行短期负荷预测[A];2004全国测控、计量与仪器仪表学术年会论文集(下册)[C];2004年

4 侯广松;刘伟生;谢广建;;基于相关因素映射和神经网络的短期负荷预测[A];2006电力系统自动化学术交流研讨大会论文集[C];2006年

5 唐向阳;;应用于短期负荷预测的自适应建模方法[A];广西电机工程学会第七届青年学术交流会论文集[C];2002年

6 杜俊红;滕欢;滕福生;;在线超短期负荷预测的分析与应用研究[A];2006中国电力系统保护与控制学术研讨会论文集[C];2006年

7 侯广松;刘伟生;;基于相关因素映射和神经网络的短期负荷预测[A];山东电机工程学会第十一届优秀学术论文集[C];2008年

8 盛琼;顾泽;骆丽楠;;基于实时气象要素的湖州短期负荷预测研究[A];第八届长三角气象科技发展论坛论文集[C];2011年

9 张雪莹;管霖;;采用谱分析建模和基于人工神经网络的短期负荷预测方案[A];广东省电机工程学会2003-2004年度优秀论文集[C];2005年

10 田晓;颜勇;孔凡坊;顾德英;;新型神经网络在短期负荷预测中的应用研究[A];山东电机工程学会第五届供电专业学术交流会论文集[C];2008年

中国重要报纸全文数据库 前2条

1 通讯员池长斌;宁夏电网短期负荷预测西北第一[N];中国电力报;2011年

2 通讯员 池长斌;宁夏电力短期负荷预测保持领先[N];中国电力报;2011年

中国博士学位论文全文数据库 前10条

1 卢芸;短期电力负荷预测关键问题与方法的研究[D];沈阳工业大学;2007年

2 郑永康;相空间重构与支持向量机结合的短期负荷预测研究[D];西南交通大学;2008年

3 王硕禾;基于短期负荷预测技术的电能控制系统研究[D];天津大学;2009年

4 程其云;基于数据挖掘的电力短期负荷预测模型及方法的研究[D];重庆大学;2004年

5 王志勇;数据挖掘方法在短期负荷预测中的应用研究[D];浙江大学;2007年

6 叶彬;混合智能建模技术及其在短期负荷预测中的应用研究[D];浙江大学;2006年

7 苏庆新;区域电力系统超短期负荷预测及网络建模分析[D];东华大学;2008年

8 吴宏晓;基于软计算方法的电力系统负荷预测[D];上海交通大学;2007年

9 雷绍兰;基于电力负荷时间序列混沌特性的短期负荷预测方法研究[D];重庆大学;2005年

10 谢忠玉;电力短期负荷时间序列混沌特性分析及预测研究[D];哈尔滨工程大学;2010年

中国硕士学位论文全文数据库 前10条

1 曹东波;“机理+辨识”预测策略在电力短期负荷预测中的应用[D];天津大学;2007年

2 张芳明;电力市场环境下的电力系统扩展短期负荷预测研究[D];湖南大学;2009年

3 李国辉;超短期负荷预测的广义外推法[D];大连理工大学;2008年

4 蔡佳宏;超短期负荷预测的研究[D];四川大学;2006年

5 罗军;跨平台短期负荷预测系统的研究、设计、实现[D];清华大学;2006年

6 王升治;深圳电网短期负荷预测闭环运行系统的研究[D];上海交通大学;2006年

7 闫冬梅;大孤山选矿厂电能信息采集及短期负荷预测的研究[D];长春工业大学;2010年

8 郭杰昊;基于混沌时间序列的短期负荷预测研究[D];上海交通大学;2015年

9 李海龙;考虑实时气象因素的电力系统短期负荷预测[D];华北电力大学;2015年

10 柏建良;组合预测模型在湖州电网短期负荷预测中的应用[D];华北电力大学;2015年


  本文关键词:基于布谷鸟搜索优化支持向量机的短期负荷预测,由笔耕文化传播整理发布。



本文编号:478082

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/478082.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户43b43***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com