基于三维激光点云数据的树冠体积估算研究
本文关键词:基于三维激光点云数据的树冠体积估算研究
更多相关文章: 树冠体积 三维激光点云 边缘特征点 不规则三角网
【摘要】:树冠体积是预估树木生物量的重要参数之一。为了实现对树木冠体体积无损高精度量测,随机抽取了6个树种、共计30棵树木的三维激光点云数据作为数据源,对树冠体积的求算方法进行研究。首先,对三维激光点云数据进行匹配、拼接、去噪及压缩等处理,提取冠体点云数据;其次,提取每一棵样木树冠的边缘特征点;最后,应用不规则三角网TIN的原理算法计算冠体体积。本文所提取的边缘特征点能够最大限度地维持树冠冠体的整体不变形,还能够继续去除部分冗余数据,缩短了不规则三角网TIN的构建时间,提高了计算效率;此外,树种包含有针叶树和阔叶树,在冠形上既有针叶树所特有的冠体体态特征,又有阔叶树的冠体体态特征,其研究结果具有一定的代表性。本文采用的方法与已有文献计算结果对比表明:均方根误差为0.832,平均绝对误差为0.49,平均相对误差为1.75%,可看出二者之间差异较小;同时在30个样木中随机抽取5个样木的人工测量结果与本研究相比较,取得的精度相对较好。采用本研究所得结果精度较高,能够满足生产需求。
【作者单位】: 北京林业大学精准林业北京市重点实验室;西南林业大学计算机与信息学院;
【关键词】: 树冠体积 三维激光点云 边缘特征点 不规则三角网
【基金】:科技北京百名领军人才培养工程项目(Z131105000513003) 北京林业大学青年教师科学研究中长期项目(2015ZCQ-LX-01)
【分类号】:S758.1;TN249
【正文快照】: 引言树冠体积、表面积是树木生物量计算中非常重要的参数,冠体的大小是预估树木生长量的基本依据之一[1]。近年来,三维激光扫描技术在林业精准测树的应用上越来越受到人们的关注,其中用于无损立木树冠体积、表面积的测量与传统的伐倒立木的方法相比较,极大地减少了木材的损耗
【相似文献】
中国期刊全文数据库 前10条
1 喜文飞;史正涛;;一种新的点云数据组合精简算法研究[J];科技通报;2014年03期
2 刘志军;;基于三坐标测量机的点云数据测量规划研究[J];黑龙江科技信息;2008年20期
3 张会霞;;基于八叉树的点云数据的组织与可视化[J];太原师范学院学报(自然科学版);2011年03期
4 方源敏;夏永华;陈杰;宋炜炜;杨永明;左小清;;基于改进的角度偏差法的采空区点云数据精简[J];地球科学与环境学报;2012年02期
5 徐伟恒;冯仲科;苏志芳;胥辉;焦有权;邓欧;;一种基于三维激光点云数据的单木树冠投影面积和树冠体积自动提取算法[J];光谱学与光谱分析;2014年02期
6 靳克强;龚志辉;汤志强;张斌;袁辉;;机载激光雷达点云数据质量评价体系分析与探讨[J];测绘与空间地理信息;2012年04期
7 刘亚文;庞世燕;左志奇;;蚁群算法的建筑立面点云数据提取[J];武汉大学学报(信息科学版);2012年11期
8 喜文飞;方源敏;李帅;李健;;一种新的激光点云数据精简方法[J];测绘工程;2012年04期
9 何丽;李嘉;郑德华;;基于栅格的点云数据的边界探测方法[J];测绘工程;2013年03期
10 刘尚蔚;朱小超;张永光;魏群;;多片点云数据拼接处理技术的研究[J];水利与建筑工程学报;2014年01期
中国重要会议论文全文数据库 前10条
1 闫龙;;摄影测量点云数据精简研究[A];第二十九届中国控制会议论文集[C];2010年
2 吴美金;;基于薄壁构件的点云数据提取[A];全国射线数字成像与CT新技术研讨会论文集[C];2009年
3 段文国;张爱武;蔡广杰;;基于VTK的点云数据绘制研究与实现[A];《测绘通报》测绘科学前沿技术论坛摘要集[C];2008年
4 宋碧波;卢小平;卢遥;;基于点云数据的建筑物三维重建[A];第二届“测绘科学前沿技术论坛”论文精选[C];2010年
5 张伟忠;张顺海;于德敏;;点云数据与建模软件的接口设计[A];全国第13届计算机辅助设计与图形学(CAD/CG)学术会议论文集[C];2004年
6 吕琼琼;杨晓晖;杨唐文;韩建达;庄严;;激光雷达点云数据的三维建模技术[A];2009年中国智能自动化会议论文集(第二分册)[C];2009年
7 刘佳;张爱武;杨丽萍;;室内场景激光点云数据的三维建模[A];《测绘通报》测绘科学前沿技术论坛摘要集[C];2008年
8 隋立春;张熠斌;赵旦;;基于MicroStation的机载LiDAR点云数据分类处理软件[A];第二届“测绘科学前沿技术论坛”论文精选[C];2010年
9 黄承亮;吴侃;刘虎;;基于三维TIN的格网化点云数据特征提取[A];数字测绘与GIS技术应用研讨交流会论文集[C];2008年
10 杨铭;陈建峰;;基于CUDA的海量点云数据kNN查询算法[A];第四届“测绘科学前沿技术论坛”论文精选[C];2012年
中国博士学位论文全文数据库 前10条
1 赵江洪;古建筑散乱点云基准面的提取与拟合[D];武汉大学;2012年
2 谷晓英;三维重建中点云数据处理关键技术研究[D];燕山大学;2015年
3 张学昌;基于点云数据的复杂型面数字化检测关键技术研究及其系统开发[D];上海交通大学;2006年
4 王果;不同平台激光点云数据面状信息自动提取研究[D];中国矿业大学(北京);2014年
5 赵煦;基于地面激光扫描点云数据的三维重建方法研究[D];武汉大学;2010年
6 张会霞;三维激光扫描点云数据组织与可视化研究[D];中国矿业大学(北京);2010年
7 孙晓东;人体点云数据处理中若干问题的研究[D];北京工业大学;2012年
8 张帆;点云数据几何处理方法研究[D];西北大学;2013年
9 王举;基于激光扫描技术的水库大坝三维变形动态监测方法研究[D];郑州大学;2015年
10 杨建思;机载/地面海量点云数据组织与集成可视化方法研究[D];武汉大学;2011年
中国硕士学位论文全文数据库 前10条
1 张磊;大型钢结构建筑安装质量检测与变形监测软件系统设计与实现[D];北京建筑大学;2015年
2 饶杰;基于激光点云数据的建筑物快速三维建模[D];中国地质大学(北京);2015年
3 李俊宝;TLS在古建筑物测绘及建模中的应用研究[D];长安大学;2015年
4 谢金坤;基于事故车辆车身变形的碰撞速度研究[D];长安大学;2015年
5 顾品荧;基于点云数据的基本款女西装样板生成系统研究[D];苏州大学;2015年
6 李国瑞;车载LiDAR点云中的车辆自动检测技术[D];长安大学;2015年
7 江静;建筑物LiDAR点云数据特征检测及配准关键技术研究[D];集美大学;2015年
8 梁子瑜;基于TLS点云数据的林分调查因子测定及收获估计[D];南京林业大学;2015年
9 喻W毶,
本文编号:1020916
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/1020916.html