K-邻域法对不同形态植被点云数据特征的提取
本文关键词:K-邻域法对不同形态植被点云数据特征的提取 出处:《江西科学》2016年06期 论文类型:期刊论文
更多相关文章: K-邻域法 点云数据 不同形态植被 尺度参数 特征提取
【摘要】:以三维激光扫描仪获取的点云数据为数据源,在分类裁剪得到不同自然地物的点云数据基础上,介绍了利用K-邻域法对不规则的自然地物点云数据进行邻域检索,通过设定尺度参数k的值对高矮不同的植被进行特征点的提取算法。通过实验对提取后的结果进行比较分析。结果表明:尺度参数的设置对点云密度较大的低矮植被效果明显,对于密度相对稀疏的高植被影响不大,参数k设置在3~5之间效果显著。
[Abstract]:Point cloud data obtained by using 3D laser scanner as the data source, point cloud data based on different natural features in the classification of the cutting, the use of K- neighbor natural features of point cloud data of irregular neighborhood search for feature point extraction algorithm of different vegetation height by setting the scale parameter K value. Based on the extraction results were compared and analyzed. The results show that: the scale parameter setting effect obviously on the low vegetation point cloud density, the density of the relatively sparse high vegetation has little effect on parameter set in the K 3~5 between the effect is remarkable.
【作者单位】: 昆明理工大学国土资源工程学院;
【分类号】:TP391.41;TN249
【正文快照】: 0引言点云数据中的特征点是最基本的几何特征和纹理特征的特征单元,是不会随着坐标系的改变而随之发生改变的[1],对于几何模型的外观及准确表达具有重要的作用。从海量的点云数据中实现特征点的提取不仅可以减少数据的计算量同时也能保留原始数据的几何特征,实现对数据量的简
【相似文献】
相关期刊论文 前10条
1 喜文飞;史正涛;;一种新的点云数据组合精简算法研究[J];科技通报;2014年03期
2 刘志军;;基于三坐标测量机的点云数据测量规划研究[J];黑龙江科技信息;2008年20期
3 张会霞;;基于八叉树的点云数据的组织与可视化[J];太原师范学院学报(自然科学版);2011年03期
4 方源敏;夏永华;陈杰;宋炜炜;杨永明;左小清;;基于改进的角度偏差法的采空区点云数据精简[J];地球科学与环境学报;2012年02期
5 徐伟恒;冯仲科;苏志芳;胥辉;焦有权;邓欧;;一种基于三维激光点云数据的单木树冠投影面积和树冠体积自动提取算法[J];光谱学与光谱分析;2014年02期
6 靳克强;龚志辉;汤志强;张斌;袁辉;;机载激光雷达点云数据质量评价体系分析与探讨[J];测绘与空间地理信息;2012年04期
7 刘亚文;庞世燕;左志奇;;蚁群算法的建筑立面点云数据提取[J];武汉大学学报(信息科学版);2012年11期
8 喜文飞;方源敏;李帅;李健;;一种新的激光点云数据精简方法[J];测绘工程;2012年04期
9 何丽;李嘉;郑德华;;基于栅格的点云数据的边界探测方法[J];测绘工程;2013年03期
10 刘尚蔚;朱小超;张永光;魏群;;多片点云数据拼接处理技术的研究[J];水利与建筑工程学报;2014年01期
相关会议论文 前10条
1 闫龙;;摄影测量点云数据精简研究[A];第二十九届中国控制会议论文集[C];2010年
2 吴美金;;基于薄壁构件的点云数据提取[A];全国射线数字成像与CT新技术研讨会论文集[C];2009年
3 段文国;张爱武;蔡广杰;;基于VTK的点云数据绘制研究与实现[A];《测绘通报》测绘科学前沿技术论坛摘要集[C];2008年
4 宋碧波;卢小平;卢遥;;基于点云数据的建筑物三维重建[A];第二届“测绘科学前沿技术论坛”论文精选[C];2010年
5 张伟忠;张顺海;于德敏;;点云数据与建模软件的接口设计[A];全国第13届计算机辅助设计与图形学(CAD/CG)学术会议论文集[C];2004年
6 吕琼琼;杨晓晖;杨唐文;韩建达;庄严;;激光雷达点云数据的三维建模技术[A];2009年中国智能自动化会议论文集(第二分册)[C];2009年
7 刘佳;张爱武;杨丽萍;;室内场景激光点云数据的三维建模[A];《测绘通报》测绘科学前沿技术论坛摘要集[C];2008年
8 隋立春;张熠斌;赵旦;;基于MicroStation的机载LiDAR点云数据分类处理软件[A];第二届“测绘科学前沿技术论坛”论文精选[C];2010年
9 黄承亮;吴侃;刘虎;;基于三维TIN的格网化点云数据特征提取[A];数字测绘与GIS技术应用研讨交流会论文集[C];2008年
10 杨铭;陈建峰;;基于CUDA的海量点云数据kNN查询算法[A];第四届“测绘科学前沿技术论坛”论文精选[C];2012年
相关博士学位论文 前10条
1 赵江洪;古建筑散乱点云基准面的提取与拟合[D];武汉大学;2012年
2 谷晓英;三维重建中点云数据处理关键技术研究[D];燕山大学;2015年
3 胡峰俊;三维离散点云数据的预处理和配准技术研究[D];浙江工业大学;2015年
4 董秀军;三维空间影像技术在地质工程中的综合应用研究[D];成都理工大学;2015年
5 李晓捷;基于深度相机的三维人体重建及在服装展示方面的技术研究[D];天津工业大学;2016年
6 张坤;基于三维激光扫描的点云数据逆向重建算法研究[D];燕山大学;2016年
7 张学昌;基于点云数据的复杂型面数字化检测关键技术研究及其系统开发[D];上海交通大学;2006年
8 王果;不同平台激光点云数据面状信息自动提取研究[D];中国矿业大学(北京);2014年
9 赵煦;基于地面激光扫描点云数据的三维重建方法研究[D];武汉大学;2010年
10 张会霞;三维激光扫描点云数据组织与可视化研究[D];中国矿业大学(北京);2010年
相关硕士学位论文 前10条
1 张磊;大型钢结构建筑安装质量检测与变形监测软件系统设计与实现[D];北京建筑大学;2015年
2 饶杰;基于激光点云数据的建筑物快速三维建模[D];中国地质大学(北京);2015年
3 李俊宝;TLS在古建筑物测绘及建模中的应用研究[D];长安大学;2015年
4 谢金坤;基于事故车辆车身变形的碰撞速度研究[D];长安大学;2015年
5 顾品荧;基于点云数据的基本款女西装样板生成系统研究[D];苏州大学;2015年
6 李国瑞;车载LiDAR点云中的车辆自动检测技术[D];长安大学;2015年
7 江静;建筑物LiDAR点云数据特征检测及配准关键技术研究[D];集美大学;2015年
8 梁子瑜;基于TLS点云数据的林分调查因子测定及收获估计[D];南京林业大学;2015年
9 喻W毶,
本文编号:1368729
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/1368729.html