当前位置:主页 > 科技论文 > 电子信息论文 >

新型正弦波导太赫兹慢波结构和器件的研究

发布时间:2018-01-04 21:43

  本文关键词:新型正弦波导太赫兹慢波结构和器件的研究 出处:《电子科技大学》2017年博士论文 论文类型:学位论文


  更多相关文章: 太赫兹 行波管 返波管 慢波结构 新型正弦波导


【摘要】:太赫兹科学技术是当今电子科学技术领域的研究热点,它在宽带通信、生物医学成像、安全检查、无损检测等诸多方面具有极为重要的应用价值。在太赫兹科学技术领域,如何产生太赫兹波是一个非常关键的问题,真空电子技术则是用来开发太赫兹辐射源的一种有效技术途径。行波管和返波管是众多传统真空电子器件中应用最为广泛的大功率辐射源。然而,随着工作频率升高到太赫兹频段,作为器件核心组件的慢波结构遇到了耦合阻抗低、反射强以及传输损耗大等关键性技术难题。为了解决这些问题,作者通过慢波结构的创新来实现突破。本论文中,作者提出了脊加载正弦波导(RLSWG)、平顶型正弦波导(TSWG)、开槽正弦波导(SSWG)、正弦型脊波导(SSRWG)四种新型电磁结构。通过研究发现,四种新结构在一定程度上解决了慢波电路耦合阻抗低、反射强以及传输损耗大等问题。因此,作者结合每种结构各自的优势,将它们应用到相应的器件设计中,这样可以有效地提高现有大功率太赫兹辐射源的工作性能。论文中首先对四种新型慢波电路的慢波特性、传输特性以及注-波互作用特性开展了深入的研究工作。然后,结合每种结构的特点,将它们应用到太赫兹行波管和返波管的设计中。论文中的具体创新点包括:1.提出了一种适合与圆形电子注互作用的脊加载正弦波导,该结构具有耦合阻抗大、传输损耗低、反射弱等优势。接下来,基于这种新型慢波结构优化设计出G波段圆形电子注行波管的高频系统。注-波互作用模拟结果表明,相比于常规正弦波导行波管,脊加载正弦波导行波管具有更大的输出功率和更短的互作用长度。在G波段,最大输出功率提高14.3%,而互作用长度缩短约9.6%。2.提出了一种适合与带状电子注互作用的平顶型正弦波导,该结构具有工作频带宽、耦合阻抗大、传输损耗低、反射弱等优势。注-波互作用模拟结果表明,平顶型正弦波导行波管比常规正弦波导行波管具有更大的输出功率和更短的互作用长度。在G波段,最大输出功率提高15.1%,而互作用长度缩短约16%。基于平顶型正弦波导结构,设计出220GHz带状注行波管的高频系统。当电子注电压为20.8kV、工作电流为100mA时,此行波管在210~255GHz的频率范围内产生57.5W以上的输出功率,输出增益大于30.6dB,最大输出功率达到115W,3dB带宽超过45GHz。3.提出了可应用于圆形电子注返波管中的开槽正弦波导,该结构具有耦合阻抗极大、传输损耗低等优势。同时,采用开槽正弦波导优化设计出一种新型的反射器,并将其应用到380GHz圆形电子注开槽正弦波导返波管设计方案中。粒子模拟结果表明,在工作电流为30mA时,通过调谐工作电压从20kV到32kV,该返波管在363.4~383.8GHz的频率范围内可以产生8.05W以上的输出功率。4.结合常规正弦波导与双脊矩形波导的结构特点提出了正弦型脊波导,该结构具有冷通带带宽宽、耦合阻抗大、传输损耗低等优势。注-波互作用模拟结果表明,在0.6-1THz频段内正弦型脊波导返波管比常规正弦波导返波管具有更大的输出功率。同时,正弦型脊波导返波管的调谐带宽比常规正弦波导返波管拓宽约13.2%。构建了G波段瓦量级正弦型脊波导返波管高频系统,该高频系统中包括正弦型脊波导慢波结构、能量输出结构、终端匹配负载结构、阻抗转换器等组件。在工作电流为11mA时,通过调谐工作电压从6kV到18kV,该返波管在175.2~251.9GHz的频率范围内可以产生0.99W以上的输出功率。5.构建出W波段正弦型脊波导传输特性的实验测试模型,并完成对此模型的加工以及传输特性的测试。实验测试结果为:在75~110GHz测试频带内,传输参量大于-3.65dB,除80.5GHz频点外,绝大部分反射参量都小于-15dB,这表明正弦型脊波导慢波结构在很宽的频带内具有很好的传输特性。综上所述,本文中关于四种新型慢波电路的研究及相关应用设计为太赫兹行波管和返波管的研究起到了推动作用,同时也为新型太赫兹辐射源的研制提供了更多的技术储备。
[Abstract]:Terahertz Science and technology is a hot research topic in the field of Electronic Science and technology, it in broadband communications, biomedical imaging, safety inspection, nondestructive testing and other aspects has very important application value in the field of technology. How to generate Terahertz Science, terahertz wave is a very critical issue, the vacuum electronic technology is an effective technology way for the development of THz radiation source. TWT and BWO is one of many traditional vacuum electronic devices widely used most high-power radiation source. However, with the working frequency to terahertz band, as the core component of the slow wave structure devices encountered strong reflection and low coupling impedance, large transmission loss etc. technical problems. In order to solve these problems, the author through the innovation of the slow wave structure to achieve a breakthrough. In this thesis, the author puts forward the ridged sine waveguide (RLSWG), Flat type sine waveguide (TSWG), slotted waveguide (SSWG), sine sine ridge waveguide (SSRWG) four new electromagnetic structure. Through the study found that four kinds of new structure in a certain extent to solve the slow wave circuit coupled low impedance, reflection and strong transmission loss and so on. Because of this, the author combines the advantages of each of their respective structure, apply them to the corresponding device design, which can effectively improve the performance of existing high-power terahertz radiation source. Firstly four novel slow wave circuit of slow wave characteristics, transmission characteristics and beam wave interaction characteristics to carry out in-depth research work. Then, according to the characteristics of each structure, they are applied to THz TWT and design BWO. The innovation point in the paper include: 1. proposes a ridged sine wave and circular electron beam interaction, the structure has The coupling impedance, low transmission loss, weak reflection and other advantages. Then, this new type of slow wave structure optimization design system of high frequency G band circular electron beam traveling wave tube based on beam wave interaction simulation results show that compared with the conventional sine wave traveling wave tube, the interaction length of ridge loaded sine wave traveling wave tube has more guide the output power and shorter. At G band, the maximum output power is increased by 14.3%, while the interaction length is about 9.6%.2. the flat type sine waveguide for sheet electron beam, the structure has the advantages of wide frequency band, coupling impedance, low transmission loss, weak reflection beam wave and other advantages. The interaction of the simulation results show that the flat type sine wave interaction in traveling wave tube guide tube has larger output power and shorter than the conventional sine wave traveling wave length. In G band, the maximum output power is increased by 15.1%, while the length of interaction Shortened about 16%. flat type sine waveguide structure based on Design of high frequency 220GHz system sheetbeam TWT. When the electron beam voltage is 20.8kV, working current is 100mA, the wave tube produce an output power of more than 57.5W in the frequency range of 210~255GHz, the output gain of more than 30.6dB, the maximum output power is 115W, more than 3dB bandwidth 45GHz.3. proposed can be applied to circular electron injection back slot sine waveguide of the structure has great coupling impedance, low transmission loss. At the same time, the slot sine waveguide designs a new type of reflector, and its application to 380GHz round beam guide slot sine wave BWO design. The results show that when the working current is 30mA, from 32kV to 20kV by tuning the working voltage, the BWO can produce more than 8.05W in the frequency range of 363.4~383.8GHz transmission A power.4. based on the structural characteristics of the conventional sine waveguide and double ridge rectangular waveguide presents sinusoidal ridge waveguide, the structure has a cold pass band width, coupling impedance, low transmission loss. The beam wave interaction. The simulation results show that in the frequency range of 0.6-1THz sinusoidal ridge wave guide BWO than conventional sine waveguide BWO has higher output power. At the same time, the sinusoidal wave tube back ridge waveguide tunable bandwidth than the conventional sine wave guide carcinotron broaden about 13.2%. constructed G band watt sinusoidal ridge waveguide BWO frequency system, including sinusoidal ridge waveguide slow wave structure of the high frequency package system, energy the output structure, terminal matching load impedance converter structure, and other components. When the working current is 11mA, from 18kV to 6kV by tuning the working voltage, the BWO can produce more than 0.99W of output power in the frequency range of 175.2~251.9GHz.5 Build a test model. The transmission characteristics of W band sinusoidal ridge waveguide, and complete the model processing and transmission characteristics of the test. The test result is: in the 75~110GHz frequency band, transmission parameter is greater than -3.65dB, in addition to the 80.5GHz frequency, most reflection parameters are less than -15dB, which indicates that the sinusoidal ridge waveguide slow wave structure in a very wide frequency band transmission has very good characteristics. In conclusion, research on four novel slow wave circuit and related applications for research and design in this paper BWO THz TWT plays a role, but also provides more technical reserves for development of a new terahertz radiation source.

【学位授予单位】:电子科技大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TN12

【参考文献】

相关期刊论文 前10条

1 徐翱;周泉丰;阎磊;陈洪斌;;0.22THz折叠波导行波管初步实验研究[J];强激光与粒子束;2013年11期

2 宫玉彬;魏彦玉;段兆云;王战亮;徐进;岳玲娜;赵国庆;殷海荣;路志刚;巩华荣;唐涛;黄民智;王文祥;许雄;赖剑强;沈飞;张亚斌;;毫米波/太赫兹真空器件中的带状电子注和新型慢波结构[J];真空电子技术;2013年01期

3 许雄;魏彦玉;沈飞;黄民智;段兆云;岳玲娜;王战亮;宫玉彬;王文祥;;650GHz正弦波导返波管的模拟计算[J];强激光与粒子束;2012年01期

4 廖复疆;;真空电子器件在100GHz以上频域的应用[J];真空电子技术;2011年05期

5 董烨;董志伟;杨温渊;陈军;;0.22THz折叠波导行波管放大器理论分析与数值模拟[J];信息与电子工程;2011年03期

6 陈樟;王亚军;;0.14THz折叠波导行波管慢波结构设计与加工[J];信息与电子工程;2011年03期

7 蔡绍伦;冯进军;;Ka波段连续波500W螺旋线行波管研究[J];真空电子技术;2010年06期

8 王自成;李海强;王莉;徐安玉;董芳;赵建东;黄明光;刘濮鲲;;32-40GHz宽带大功率行波管的研究进展[J];微波学报;2010年S1期

9 阮存军;王树忠;赵鼎;阮望;王勇;谢敬新;;新型带状注毫米波器件的研究进展[J];真空电子技术;2010年02期

10 冯进军;胡银富;蔡军;邬显平;唐烨;;W波段行波管发展评述[J];真空电子技术;2010年02期

相关会议论文 前2条

1 张鲁奇;魏彦玉;高宇航;江雪冰;雷霞;徐进;赵国庆;宫玉彬;;G波段正弦波导行波管的设计和研究[A];2016真空电子学分会第二十届学术年会论文集(上)[C];2016年

2 蔡军;冯进军;胡银富;邬显平;杜英华;刘京恺;陈辑;董芮彤;张小青;崔延军;潘攀;童义;;W波段脉冲行波管放大器[A];中国电子学会真空电子学分会第十九届学术年会论文集(上册)[C];2013年

相关博士学位论文 前6条

1 刘洋;V波段新型慢波结构行波管的研究[D];电子科技大学;2012年

2 许雄;正弦波导及其应用的研究[D];电子科技大学;2012年

3 张长青;大功率毫米波折叠波导行波管的研究[D];电子科技大学;2011年

4 王建勋;Ka波段回旋放大器及W波段带状束电子光学系统的研究[D];电子科技大学;2010年

5 何俊;毫米波新型曲折波导行波管的研究[D];电子科技大学;2010年

6 蔡军;W波段折叠波导慢波结构的研究[D];山东大学;2006年

相关硕士学位论文 前1条

1 廖明亮;毫米波新型曲折波导慢波结构的研究[D];电子科技大学;2010年



本文编号:1380241

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/1380241.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户7aa04***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com