基于有限元法的IGBT模块封装散热性能及热应力的仿真研究
本文关键词:基于有限元法的IGBT模块封装散热性能及热应力的仿真研究 出处:《重庆大学》2015年硕士论文 论文类型:学位论文
更多相关文章: 有限元 IGBT模块 散热性能 热-结构耦合 热应力
【摘要】:随着IGBT模块电流密度的不断增大、功率不断提升、体积不断缩小,IGBT模块内部发热量成倍增加,热量在内部堆积不易散发,温度引起的热学、力学载荷愈加严重,进而导致温度升高及热应力形变加重。若器件在此条件下长期运行,容易导致材料疲劳、可靠性降低、甚至影响使用寿命。因此,对IGBT模块封装的热可靠性相关问题的进一步探索和研究,揭示影响IGBT模块封装可靠性的主要因素,对IGBT模块结构优化设计、改善散热性能有非常重要的指导意义及工程实用价值。本文以改善IGBT模块散热性能为目的,以ANSYS有限元分析软件为平台,分别研究了复合材料导热性能、IGBT模块的散热性能以及热应力,并根据计算得到的IGBT模块封装的最高结温和最大热应力的结果,并对散热设计及结构优化提出建议。首先,参考复合材料实际的性能参数,模拟复合材料的微观结构,建立三维有限元模型,计算复合材料的等效导热率,其计算值与理论值、试验值能很好吻合,说明有限元方法计算复合材料导热率的可行性。在此基础上对复合材料导热性能的影响因素进行分析:基体导热率、填料导热率、填料体积百分数、填料分布、填料形状、填料取向及椭球填料颗粒长径比,并对改善复合材料导热性能的措施提出建议。其次,研究了IGBT模块封装的散热性能,建立切合实际的IGBT模块封装三维有限元模型,对温度场进行仿真。通过计算得到的IGBT模块封装的最高结温,研究基板、焊层、衬板的材料及其厚度对IGBT模块封装散热性能的影响,并对IGBT模块的散热设计进行分析,为其结构优化提供参考。最后,对IGBT模块进行热-结构耦合分析,用间接法分析IGBT模块封装的热应力分布,通过计算得到的IGBT模块封装的最大热应力,研究基板、焊层、衬板的材料及其厚度对IGBT模块封装最大热应力的影响,并提出IGBT模块结构优化的措施。
[Abstract]:With the increasing of current density and power of IGBT module, the volume is reduced and the internal heat is multiplied, the heat is not easy to be emitted, and the heat is caused by temperature. The mechanical load becomes more and more serious, which leads to temperature rise and thermal stress deformation aggravation. If the device runs under this condition for a long time, it will easily lead to material fatigue, reliability decline, and even affect the service life. Further research on the thermal reliability of IGBT module packaging, reveal the main factors that affect the reliability of IGBT module packaging, and optimize the structure of IGBT module. In order to improve the heat dissipation performance of IGBT module, ANSYS finite element analysis software is used as the platform. The heat dissipation and thermal stress of the IGBT module were studied, and the results of the highest junction and maximum thermal stress of the IGBT module were calculated. First of all, referring to the actual performance parameters of the composite material, the microstructure of the composite is simulated, the three-dimensional finite element model is established, and the equivalent thermal conductivity of the composite is calculated. The calculated value is in good agreement with the theoretical value and the experimental value, which shows that the finite element method is feasible to calculate the thermal conductivity of composite material. On this basis, the factors affecting the thermal conductivity of composite material are analyzed: the thermal conductivity of matrix. The thermal conductivity, volume percentage, packing distribution, packing shape, packing orientation and the ratio of length to diameter of ellipsoidal packing particles are also discussed, and some suggestions for improving the thermal conductivity of composites are put forward. The heat dissipation performance of IGBT module package is studied. The 3D finite element model of IGBT module package is established and the temperature field is simulated. The maximum junction temperature of IGBT module package is calculated. The influence of the material and thickness of substrate, welding layer and liner on the heat dissipation performance of IGBT module packaging is studied, and the heat dissipation design of IGBT module is analyzed to provide a reference for its structure optimization. The thermo-structural coupling analysis of IGBT module is carried out, and the thermal stress distribution of IGBT module package is analyzed by indirect method. The maximum thermal stress of IGBT module package is calculated, and the substrate and welding layer are studied. The influence of liner material and its thickness on the maximum thermal stress of IGBT module packaging is discussed. The measures for optimizing the structure of IGBT module are put forward.
【学位授予单位】:重庆大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TN322.8
【相似文献】
相关期刊论文 前10条
1 王彦刚,武力,崔雪青,吴武臣,P.Jacbo,M.Held;IGBT模块封装热应力研究[J];电力电子技术;2000年06期
2 江平;;柔性基板模块封装技术[J];电讯技术;2011年11期
3 马亮;;智能卡非接触模块封装技术[J];电子世界;2014年08期
4 徐云燕;吕晓飞;郑利兵;方化潮;王春雷;;IGBT模块封装工艺的研究[J];智能电网;2014年01期
5 Yoshitaka Nishimura;Kazunaga Oonishi;Fumihiko Momose;Tomoaki Goto;袁海斌;;高可靠性IGBT模块封装的设计[J];电力电子;2010年04期
6 Peter Beckedahl;;电力电子模块封装的革命——无绑定线、焊接和导热硅脂的模块[J];电源世界;2011年11期
7 ;非接触IC卡模块封装技术[J];中国集成电路;2007年07期
8 姚玉双;亓笑妍;王晓宝;赵善麒;;IGBT模块封装新技术[J];电力电子技术;2012年12期
9 张朋;韩荣刚;金锐;于坤山;何维国;刘隽;;电动汽车用大功率IGBT模块封装技术[J];智能电网;2014年01期
10 丁杰;唐玉兔;忻力;张陈林;胡昌发;;IGBT模块封装的热性能分析[J];机车电传动;2013年02期
相关会议论文 前2条
1 姚太平;;三合一集成式全彩模块封装方式[A];2008全国LED显示应用技术交流暨产业发展研讨会文集[C];2008年
2 巩鹏亮;刘清军;刘利峰;赵善麒;;如何正确理解FRED和FRD的特性参数[A];2008中国电工技术学会电力电子学会第十一届学术年会论文摘要集[C];2008年
相关硕士学位论文 前3条
1 张薷方;基于有限元法的IGBT模块封装散热性能及热应力的仿真研究[D];重庆大学;2015年
2 翟超;IGBT模块封装热应力研究[D];浙江大学;2013年
3 詹为宇;特种模块封装工艺研究[D];电子科技大学;2008年
,本文编号:1380833
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/1380833.html