当前位置:主页 > 科技论文 > 电子信息论文 >

剪切载荷下面阵列封装互连结构的力学行为研究

发布时间:2018-01-07 10:17

  本文关键词:剪切载荷下面阵列封装互连结构的力学行为研究 出处:《哈尔滨理工大学》2015年硕士论文 论文类型:学位论文


  更多相关文章: BGA CCGA CuCGA 长径比 至断剪切力 至断位移


【摘要】:随着电子产品向微型化、多功能化方向发展,面阵列封装以其高I/O数、导热性能好、封装体积小和成本低等优点成为目前的主流封装形式。电子产品在使用过程中,由于热循环,跌落冲击等因素可能在芯片基板和电路板之间产生剪切载荷使其损坏失效,因此研究互连结构的剪切性能十分重要。 本文采用PTR-1100接合强度测试仪对单个BGA微焊点以及BGA,CCGA和CuCGA封装的整体阵列互连结构的剪切性能进行了实验研究,并考察了焊点形状参数和剪切速度对阵列互连结构的剪切行为的影响。结果表明: 1)BGA单球和阵列互连的剪切曲线均呈抛物线形。CCGA和CuCGA阵列互连在发生挠曲变形后剪切曲线表现出不同的四个阶段,并且焊柱在第一阶段以弹性变形为主,在第二阶段以挠曲变形为主。 2)SAC305和Sn30Pb70BGA微焊点的至断剪切力随剪切高度的增加而减小,随剪切速度的增加而增大。至断位移随剪切高度的增加而增加;而剪切速度对单个微焊点的至断位移的影响在SAC305和Sn30Pb70两种不同材料上有所不同。BGA阵列互连的至断剪切力随剪切速度的增加呈增加趋势,至断位移则呈减小趋势。 3)长径比从3到10,CCGA的至断剪切力先减小后增加,然后趋于平稳;长径比从6到12,CuCGA的至断剪切力则呈增加趋势,,但增加趋势变得缓慢。CCGA和CuCGA的至断位移随长径比的增加而增加。随着剪切速度的增加,CCGA和CuCGA的至断剪切力都呈增加趋势;CuCGA的至断位移也呈增加趋势,而剪切速度对CCGA至断位移的影响因长径比的不同而有所不同。 4)相同剪切条件下,SAC305单个BGA微焊点的至断剪切力高出Sn30Pb70约1~4N,阵列互连高出Sn30Pb70约3N;SAC305的至断位移也普遍高于Sn30Pb70。相同长径比时,无论是高速剪切还是低速剪切,CuCGA的至断剪切力都要比CCGA的至断剪切力高出30~60N。
[Abstract]:With the development of miniaturization and multifunction of electronic products, surface array packaging has good thermal conductivity due to its high I / O number. The advantages of small package size and low cost have become the mainstream packaging form. Electronic products in the process of use due to the thermal cycle. The shear load between the chip substrate and the circuit board may be caused by the drop impact, so it is very important to study the shear performance of the interconnect structure. In this paper, PTR-1100 bonding strength tester is used to study the shear performance of single BGA micro-solder joint and the whole array interconnect structure packaged by BGA CCGA and CuCGA. The effects of solder joint shape parameters and shear velocity on the shear behavior of the array interconnection structures are investigated. 1. The shear curves of single sphere and array interconnect are parabola. The shear curves of CCGA and CuCGA array interconnect show four different stages after flexural deformation. In the first stage, elastic deformation is the main deformation, and in the second stage, flexural deformation is the main deformation. 2the breaking shear stress of SAC305 and Sn30Pb70BGA microjoints decreases with the increase of shear height, increases with the increase of shear velocity, and increases with the increase of shear height. However, the effect of shear rate on the breaking displacement of single micro-solder joint is different between SAC305 and Sn30Pb70. The breaking shear force of BGA array interconnect increases with the increase of shear velocity. Plus trends. The displacements to fault tend to decrease. 3) the shear stress of CCGA from 3 to 10 mm decreases first, then increases, and then tends to steady. The shear stress of CuCGA with aspect ratio from 6 to 12 is increasing. But the increasing trend becomes slow. The displacements of CCGA and CuCGA increase with the increase of aspect ratio, and the shear stress of CCGA and CuCGA increase with the increase of shear velocity. The displacements of CuCGA increased, and the effect of shear velocity on the displacement of CCGA to fault varies with the ratio of length to diameter. 4) under the same shear condition, the breaking shear stress of single BGA microjoint is about 1 ~ 4 N higher than that of Sn30Pb70, and the interconnect of array is about 3 N higher than that of Sn30Pb70. The breaking displacement of SAC305 is also higher than that of Sn30Pb70.When the ratio of length to diameter is the same, both high-speed shear and low-speed shear are obtained. The ultimate shear stress of CuCGA is 30 ~ 60 Nm higher than that of CCGA.
【学位授予单位】:哈尔滨理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TN405

【相似文献】

相关期刊论文 前10条

1 钱晓宁,郑戟,李征帆;小波多分辨率分析改进互连结构电容提取[J];电子学报;1999年05期

2 邵振海,洪伟;三维多导体互连结构交扰问题的时域分析[J];电子学报;2000年02期

3 Kathleen Nargi-Toth;Pradeep Gandhi;丁志廉;;高密度互连结构[J];印制电路信息;2000年12期

4 刘心松 ,彭寿全;分布式

本文编号:1392124


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/1392124.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户3c163***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com