光学元件吸收损耗的高灵敏度检测技术研究
本文关键词: 激光量热技术 大口径光学元件 吸收 激光诱导偏转技术 定标误差 热变形 表面热透镜技术 光热偏转技术 灵敏度 构型优化 出处:《中国科学院研究生院(光电技术研究所)》2015年博士论文 论文类型:学位论文
【摘要】:激光技术的不断发展对光学元件的性能提出了越来越高的要求。尤其在高功率激光系统中,光学元件的吸收损耗是限制其进一步发展的一个重要因素。而光学元件吸收损耗的准确测量,对于优化镀膜工艺、降低薄膜吸收损耗具有重要的意义。因此,本文围绕吸收损耗的高灵敏检测技术展开研究工作。针对大口径光学元件提出了激光量热法测量其吸收损耗的方法。首先建立了大口径光学元件的温升模型,用于分析样品表面温升数据,计算大口径光学元件的吸收损耗。使用该温度模型分析了激光量热法测量大口径光学元件吸收损耗的测量灵敏度以及温度探测位置误差对测量结果的影响。激光诱导偏转技术中使用了电阻加热定标方法实现了光学元件吸收损耗的绝对测量。为分析电阻加热定标方法的定标误差,建立了方形平顶激光辐照和电阻加热激励下光学样品温升的理论模型和有限元模型。理论上分析了激光诱导偏转信号和相应定标误差与探测激光位置的关系并提出了减小定标误差的方法。从表面热透镜技术的理论出发,提出了使用短波长探测激光提高表面热透镜技术测量灵敏度的方法并使用三个不同波长的探测激光进行了实验验证。理论和实验结果表明:最佳探测距离和相应的表面热透镜信号都与波长成反比。使用紫外激光作为探测光光源可以有效提高表面热透镜信号的测量灵敏度。建立了基于菲涅尔衍射理论的光热偏转信号的精确理论模型,得到了光热偏转信号的表达式和光热偏转信号的构型优化参数。此外,开展了光热偏转技术实验,分析了探测激光光斑、束腰位置、波长以及探测距离对光热偏转信号的影响。理论和实验结果表明,最优探测距离完全依赖于探测激光的束腰位置和探测激光波长,通过优化探测激光光斑半径和探测距离以及使用短波长探测激光可以有效增大光热偏转技术的测量灵敏度。
[Abstract]:With the development of laser technology, the performance of optical components is required more and more, especially in high-power laser systems. The absorption loss of optical elements is an important factor limiting its further development. The accurate measurement of absorption loss of optical elements is of great significance for optimizing the coating process and reducing the absorption loss of films. In this paper, the high sensitive measurement of absorption loss is studied. A method of measuring absorption loss by laser calorimetry is proposed for large aperture optical elements. Firstly, the temperature rise model of large aperture optical elements is established. Used to analyze surface temperature rise data of samples. The absorption loss of large aperture optical elements is calculated. The sensitivity of laser calorimetric method for measuring absorption loss of large aperture optical elements and the influence of temperature detection position error on the measurement results are analyzed by using the temperature model. The resistive heating calibration method is used to realize the absolute measurement of absorption loss of optical elements in the induced deflection technique, and the calibration error of the resistive heating calibration method is analyzed. The theoretical model and finite element model of temperature rise of optical samples excited by square flat-top laser irradiation and resistance heating are established. The relationship between laser induced deflection signal and corresponding calibration error and laser position detection is analyzed theoretically. The method of reducing calibration error is given, which is based on the theory of surface thermal lens technology. In this paper, a method of improving the sensitivity of surface thermal lens technique by using short wavelength detection laser is proposed, and the experimental results of three different wavelengths of detection laser are verified. The theoretical and experimental results show that:. The optimum detection distance and the corresponding surface thermal lens signal are inversely proportional to the wavelength. The sensitivity of the surface thermal lens signal can be improved effectively by using the ultraviolet laser as the detecting light source. The Fresnel diffraction theory is established. The exact theoretical model of the photothermal deflection signal based on the. The expression of the photothermal deflection signal and the optimized configuration parameters of the photothermal deflection signal are obtained. In addition, the experiment of photothermal deflection technique is carried out, and the detection of laser spot and the position of beam waist are analyzed. The theoretical and experimental results show that the optimal detection distance is completely dependent on the beam waist position and the detection wavelength of the laser. By optimizing the detection of laser spot radius and detection distance and using short wavelength laser detection, the measurement sensitivity of photothermal deflection technology can be increased effectively.
【学位授予单位】:中国科学院研究生院(光电技术研究所)
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TN249
【相似文献】
相关期刊论文 前10条
1 蔡春平;光纤的光吸收损耗[J];应用光学;1994年03期
2 赵勇;孟庆尧;;氢与光纤的物化反应对井下永久性测量的影响[J];光电工程;2007年09期
3 姚腾鸿;用VAD方法制造超低OH含量的光纤[J];激光通信;1981年01期
4 王桂芬,马根源,陈卫,,顾立群,张光寅;测量光纤吸收损耗和散射损耗的一种简单有效方法[J];南开大学学报(自然科学版);1995年04期
5 ;其他[J];中国光学与应用光学文摘;2008年02期
6 归振兴;沈俊泉;陈钰明;奚全新;沈华勤;张顺怡;;闭环横流CO_2激光器中突变吸收损耗机理的研究[J];激光技术;1992年02期
7 宋拥军,费雄骏;卫星通信大气吸收损耗的计算方法[J];无线电通信技术;2000年06期
8 赵洪林;童玲玲;王钢;王磊;;海上微波信道的传输特性[J];哈尔滨理工大学学报;2006年02期
9 马春生,刘式墉;MOS型波导光学特性分析[J];半导体学报;1989年04期
10 赵宏太,柳晓军,王谨,曹俊文,赵志,詹明生;腔衰荡法四腔镜反射率及腔内吸收测量[J];激光与光电子学进展;2001年05期
相关会议论文 前1条
1 宋永香;;钬激光器0°全反膜的制备与工艺[A];中国光学学会2011年学术大会摘要集[C];2011年
相关博士学位论文 前1条
1 张晓荣;光学元件吸收损耗的高灵敏度检测技术研究[D];中国科学院研究生院(光电技术研究所);2015年
相关硕士学位论文 前1条
1 李爽;遂道结吸收损耗及其对新型大功率激光器特性影响的研究[D];北京工业大学;2000年
本文编号:1454736
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/1454736.html