SAXS Channel-cut分光晶体加工与检测研究
发布时间:2018-02-23 17:27
本文关键词: 同步辐射 单色器 线切割 研磨抛光 摇摆曲线 出处:《中国科学院研究生院(上海应用物理研究所)》2015年硕士论文 论文类型:学位论文
【摘要】:同步辐射具有宽频谱、高亮度、高通量等优良特性,迅速发展到第三代、第四代同步辐射光源。同步辐射光源是集X射线光学、热学、力学、真空科学、机械科学、电子学等科学为一体的系统性大工程。截止2009年上海光源一期工程圆满完成,时至今日,首批7线8站已经在不同科学领域取得重大成果。根据上海光源的规划,预计将设计60多条光束线与近百个实验站。而每条光束线从光源引出到实验站都要经过单色、聚焦、准直等过程。每一个环节都需要特殊的光学元件来实现。目前,上海光源用于光束线传输的光学元件,大部分采用国内设计,国外加工的模式,这样既影响效率又影响后期维护。而目前上海光源二期光束线正在推进,并且对晶体光学元件的需求量远大于一期工程。为了使晶体加工成为上海光源一项自主的技术,为上海光源二期光束线预期完成建设任务提供保障,而且还能够为光源一期所用到的光学元件进行更新换代,还可为今后国内外的同步辐射光学元件的设计与加工给予技术支撑。于是开展本课题的研究,主要研究内容如下: 分析对比了不同单色器晶体的设计理论,并知道能够解释晶体的X射线衍射的主要有运动学衍射理论和动力学衍射理论。而动力学衍射理论最适合解释单色器晶体衍射。根据动力学衍射理论,单色器晶体的衍射类型主要有Laue和Bragg衍射,并分析二者的不同之处。为了获得高能量分辨与更好的准直光,结合衍射动力学理论,利用多级衍射、晶体斜切等方法设计单晶硅Channel-cut型单色器。最后根据上海光源小角散射线站的Bonse-Hart相机系统需要,设计Channel-cut型准直晶体与分析晶体,并通过理论模拟计算晶体单色器的摇摆曲线,最后计算出准直晶体的能量分辨率。 研究单色器晶体线切割成形、研磨抛光工艺。从已经很成熟的半导体及光伏产业晶片加工工艺中汲取经验,研究出适合晶体单色器的加工工艺。本课题主要研究单晶硅分光晶体的加工工艺与其定向方法。首先,研究单晶硅精确定向方法;其次,利用往复式固着金刚石线切割方式切割Channel-cut型分光晶体成形,并研究了影响线切割过程的一些工艺参数,如:金刚石的颗粒度、金刚线的疲劳程度、切割过程中的切速比,以及往复切割次数等影响晶体表面粗糙度的工艺参数。再次,研究单晶硅的机械化学研磨工艺,主要研究研磨材料的选取、研磨料的颗粒度、研磨过程中的相对速度、研磨压力,以及影响材料去除率等影响研磨质量的工艺参数。最后,再简单尝试研究晶体抛光技术,同样选择机械化学的方式,,并利用金刚石与二氧化硅抛光液,聚氨酯与磨砂革抛光垫抛光单晶硅。最终实现单晶硅的塑性区域加工,得到符合光束线对单色器的设计要求。 简单给出单色器晶体设计与加工完成后的重要评价参数,并研究这些评价参数的检测方法。文中提出影响单色器主要的参数,如:反射面粗糙度、反射面的面形、以及单色器晶体的摇摆曲线,和各衍射面的斜切角。结合上海光源小角散射线站设计的Bonse-Hart相机系统所设计Channel-cut型准直晶体与分析晶体,检测出该晶体单色器反射面的粗糙度、面形、摇摆曲线,和各个反射面的斜切角。通过实验检测结果与理论计算进行对比,总结单色器晶体设计与加工过程中存在的问题,并提出改进与完善的措施。
[Abstract]:Synchrotron radiation has wide spectrum, high brightness, high throughput and excellent characteristics, the rapid development of the third generation, fourth generation synchrotron radiation source. The synchrotron radiation source is the set of X ray optics, calorifics, mechanics, vacuum science, mechanical science, electronics and science as a whole system of big projects. By the end of 2009 the first phase of the project of Shanghai light source the successful completion of today, the first batch of 7 line 8 station has made great achievements in various scientific fields. According to the Shanghai light source planning, is expected to design more than 60 beamlines and experimental stations. Nearly 100 focus and each beam line from the light source is led to the experimental station to go through the process, monochrome, alignment. Every links need special optical components to achieve. At present, the Shanghai light source for optical elements for beam line transmission, most of the domestic and foreign design, processing mode, so as to affect the efficiency and effect of maintenance at present. Shanghai two light beam line is advancing, and the demand for crystal optical element is far greater than the first phase of the project. In order to make the crystal processing become a self Shanghai light source technology, to provide protection for Shanghai light source beamline two expected to complete the construction tasks, but also for a light source optical element used to update replacement, but also give the technical support for the design and manufacture of synchrotron radiation optical elements in the future at home and abroad. So the research of this topic, the main research contents are as follows:
Analysis and comparison of the design theory of different monochromator crystal, and know the kinematical diffraction theory and dynamical diffraction theory can explain the main crystal X ray diffraction. The dynamical diffraction theory explain the most suitable monochromator crystal diffraction. Based on the dynamical theory of diffraction, diffraction type monochromator crystal are mainly Laue and Bragg diffraction analysis, and the difference between the two. In order to obtain high energy resolution and collimated light better, combined with the dynamical theory of diffraction, using multilevel diffraction, crystal oblique design method of Channel-cut type silicon monochromator. Finally, according to the needs of the Bonse-Hart camera system of Shanghai light source of small angle scattering line station, the design of Channel-cut type crystals and crystal alignment analysis, and calculation of the rocking curve of crystal monochromator through the simulation theory, and finally calculate the collimation crystal energy resolution.
The forming of monochromator crystal cutting, grinding and polishing process. Learn from the experience of semiconductor and photovoltaic industry wafer processing technology has been very mature in the research process for the machining process of crystal monochromator. Its orientation method of the main research topics of monocrystalline silicon analyzer crystal. First, research on monocrystalline silicon precise orientation method; secondly, cut Channel-cut type optical crystal forming by using a reciprocating fixed diamond wire, some process parameters, and the effects of the wire cutting process such as particle size of diamond, diamond wire fatigue degree, cutting speed of the cutting process, influence of crystal surface roughness parameters and degree of reciprocating cutting times. Again, chemical mechanical polishing study on the selection process of monocrystalline silicon, main abrasive materials, abrasive particle size, the relative speed of the grinding process, grinding pressure, The removal process parameters affecting the quality of grinding rate and effect of material. Finally, a simple attempt to study the crystal chemical mechanical polishing technology, choose the same way, diamond polishing liquid and silicon dioxide and using polyurethane nubuck leather polishing pad and polishing silicon. The plastic zone ultimately processing silicon, to be consistent with the design of the monochromator beamline requirements.
An important evaluation design and simple processing is given after the completion of the monochromator crystal parameters, detection methods and study these parameters. In this paper the influence of main parameters such as: monochromator, reflecting surface roughness, surface reflectance, and crystal monochromator rocking curve, and the diffraction plane oblique angle. Combining with the Bonse-Hart camera system design in Shanghai light small angle scattering line station designed by Channel-cut and analysis of the collimation of crystal crystal, crystal monochromator reflecting surface roughness, surface shape detection, rocking curve, and each reflector of the oblique angle. Through the experimental results and the theoretical calculation were compared, summarized the monochromator crystal design and machining process, and put forward the measures of improvement and perfection.
【学位授予单位】:中国科学院研究生院(上海应用物理研究所)
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TN304.12
【参考文献】
相关期刊论文 前10条
1 董志刚,田业冰,康仁科,郭东明,金洙吉;硅片超精密磨床的发展现状[J];电子工业专用设备;2004年06期
2 葛培琪,孟剑锋,陈举华,章亮炽;硅晶体精密切片技术及相关基础研究[J];工具技术;2005年09期
3 贺俊;陈磊;;使用红外干涉仪测量非球面面形[J];光学精密工程;2010年01期
4 冯新康;徐中民;张翼飞;杨铁莹;王R
本文编号:1526972
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/1526972.html