当前位置:主页 > 科技论文 > 电子信息论文 >

光电振荡器的性能与设计研究

发布时间:2018-02-25 16:01

  本文关键词: 微波光子技术 光电振荡器 多频率光电振荡器 反馈调制 出处:《贵州大学》2015年硕士论文 论文类型:学位论文


【摘要】:目前,微波信号广泛运用于生产生活中的各个领域,其中航空、航天、军事雷达等领域都需要高质量的微波信号,使得微波信号源成为微波系统中的核心部件,它是整个微波系统性能好坏的决定因素之一。但传统微波源不能很好的平衡高质量与高频率之间的问题,因此吸引了大量国内外研究者研究新型微波源。近年来,由于光电器件性能与制作工艺的蓬勃发展,产生了多种光子微波信号产生技术。本文的主要内容就是通过对现有的光电振荡器(Optoelectronic Oscillator,OEO)进行优化、改进、拓展以获得高频率、低相位噪声的微波信号。本文中我们介绍了OEO的发展现状、结构,并对其进行了详细的理论分析。针对光电振荡器目前存在的问题——高Q值与边模抑制之间的矛盾,本文提出了一种光场往返调制的光域双环路光电振荡器。系统中光信号往返两次通过马赫-曾德尔调制器后再进行反馈调制,使得环路中的光纤延时利用率得到加倍,同时构成两个不同环长的光学环路,进行边模抑制。通过实验,获得了边模抑制比为48.33dB,在频偏10kHz时的单边带相位噪声为-97.35dBc/Hz的微波信号。该结构无需增加有源器件,降低了系统中光纤的使用量,简化了实验的控制参数。信号在两个环路中循环时相向传输,进而消除了随机干涉和拍噪声引入。此外,为了提高成本效益,我们还提出了一种多频率光电振荡器。通过在光域双环路光电振荡器结构中简单增加平行滤波支路就能建立多个独立振荡,实现多频率输出。实验验证了频率为20GHz和9GHz的双频光电振荡器,测得信号的边模抑制比超过65dB。在频偏10kHz时,20GHz和9GHz信号的单边带相位噪声分别为-108dBc/Hz和-113dBc/Hz。该结构不会引入其他的噪声且两个信号之间不会出现相互干扰现象。基于OEO的微波信号发生器结构简单,性能良好,其应用范围十分广阔。
[Abstract]:At present, microwave signal is widely used in various fields of production and life. Among them, high quality microwave signal is needed in aviation, aerospace, military radar and so on, which makes microwave signal source become the core component of microwave system. It is one of the determinants of the performance of the whole microwave system, but the traditional microwave source can not balance the problem between high quality and high frequency, so it attracts a lot of researchers at home and abroad to study the new microwave source. Due to the rapid development of optoelectronic device performance and fabrication technology, a variety of photonic microwave signal generation techniques have been produced. The main content of this paper is to optimize and improve the existing optoelectronic Oscillator OOEO to obtain high frequency. Microwave signal with low phase noise. In this paper, we introduce the development and structure of OEO, and make a detailed theoretical analysis of it. In view of the existing problem of optoelectronic oscillator, the contradiction between high Q value and side mode suppression, In this paper, a kind of optical domain double loop optoelectronic oscillator is proposed, in which the optical signal is modulated by the Mach Zehnder modulator twice, and the time delay efficiency of the optical fiber in the loop is doubled. At the same time, two optical loops with different ring lengths are constructed for edge-mode suppression. The edge-mode rejection ratio is 48.33 dB and the single-sideband phase noise is -97.35 dBc / Hz when the frequency offset is 10 kHz. There is no need to add active devices to the structure. It reduces the amount of optical fiber used in the system and simplifies the control parameters of the experiment. The signal is transmitted in opposite direction as it circulates in two loops, thereby eliminating the introduction of random interference and beat noise. In addition, in order to improve the cost efficiency, We also propose a multi-frequency optoelectronic oscillator, in which multiple independent oscillations can be established by simply adding parallel filter branches to the optical-domain double-loop optoelectronic oscillator. The multi-frequency output is realized. The double-frequency optoelectronic oscillator with 20GHz and 9GHz frequencies is verified by experiments. The edge-mode rejection ratio of the measured signal is more than 65 dB. The single sideband phase noise of 20GHz and 9GHz signals at 10kHz is -108 dBcr / Hz and -113dBc / Hz. this structure will not introduce any other noise and there will be no interference between the two signals. The structure of microwave signal generator is simple, Its performance is good, its application scope is very broad.
【学位授予单位】:贵州大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TN753.2

【参考文献】

相关期刊论文 前2条

1 李恒文;江阳;徐静;周竹雅;王顺艳;;基于光纤参量环形镜的光毫米波副载波产生[J];光学学报;2012年10期

2 徐静;江阳;周竹雅;李恒文;王顺艳;;基于微波光子滤波器的归零到非归零码型转换研究[J];中国激光;2012年09期



本文编号:1534216

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/1534216.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户81daf***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com