多量子阱APD器件的结构优化和外延生长
发布时间:2018-03-07 05:34
本文选题:多量子阱(超晶格)结构 切入点:雪崩光电二极管 出处:《北京工业大学》2016年硕士论文 论文类型:学位论文
【摘要】:雪崩光电二极管(avalanche photodiode,简记为APD)由于其固有的倍增机制,能够探测微弱的光信号并且器件结构简单、成本低、体积小,使得它用作光接收器具有更大的优势。APD要实现高速、高灵敏度、低噪声,要求用作倍增层材料的电子离化率α和空穴离化率β的差异尽可能大。多量子阱(超晶格)结构中异质材料能带带边的不连续性能够使电子离化几率相对于空穴离化几率显著增大。本论文基于碰撞离化理论研究了异质材料超晶格结构对载流子离化率的作用,根据用于长波长(1.3~1.65μm)的InP基光电探测器的性能要求结合超晶格的能带结构和材料性质设计了具有In_(0.53)Ga_(0.47)As/In_(0.52)Al_(0.48)As超晶格结构的雪崩光电二极管(superlattice avalanche photodiode,简记为SAPD)。本文以实现高信噪比的长波长SAPD为目的,研究工作主要包括以下几个方面:(1)在碰撞离化理论中讨论了离化阈值的重要作用,为了进行碰撞过程的宏观描述,引入了雪崩增益的离化系数;对超晶格结构对载流子离化率的作用机理进行了详细的公式推导和理论分析。(2)利用半导体仿真工具对器件结构进行优化,分析不同结构参数对器件性能的影响,得到了低隧道电流、高倍增因子的超晶格结构雪崩层;根据电场分布方程模拟了器件二维电场分布对电荷层厚度及掺杂的依赖关系;基于量子效率和器件响应速度优化了吸收层的结构参数。(3)进行材料的生长条件优化实验,得到高质量的外延材料;解决In_(0.53)Ga_(0.47)As/In_(0.52)Al_(0.48)As超晶格材料外延生长的经验问题;进行关键掺杂技术的调试;完成具有超晶格结构的雪崩光电二极管器件的外延生长。(4)进行器件的光电特性测试,与吸收层、渐变层、电荷层、倍增层分离的雪崩光电二极管做比较,验证超晶格结构对于提升雪崩光电二极管性能的作用。
[Abstract]:Avalanche photodiodes (APD) because of its inherent multiplying mechanism, it can detect weak optical signals, and the device is simple in structure, low in cost and small in size, which makes it have a greater advantage as an optical receiver. APD has to achieve high speed. High sensitivity, low noise, The difference between electron ionization rate 伪 and hole ionization rate 尾 is as great as possible. The band edge discontinuity of heterogeneous materials in multiple quantum wells (superlattices) can make the electron ionization probability relative to the hole. The effect of superlattice structure on carrier ionization rate is studied based on collision ionization theory. According to the performance requirements of InP based photodetectors for long wavelength 1.3n 1.65 渭 m) combined with the energy band structure and material properties of superlattices, an avalanche photodiode with In_(0.53)Ga_(0.47)As/In_(0.52)Al_(0.48)As superlattice structure is designed for superlattice avalanche photodiodes. Ratio of the long wavelength SAPD for the purpose, In order to describe the collision process, the ionization coefficient of avalanche gain is introduced. The mechanism of the superlattice structure acting on the carrier ionization rate is derived and analyzed in detail. (2) the semiconductor simulation tool is used to optimize the device structure, and the influence of different structure parameters on the device performance is analyzed. The avalanche layer of superlattices with low tunneling current and high multiplication factor is obtained and the dependence of two-dimensional electric field distribution on charge layer thickness and doping is simulated according to the electric field distribution equation. Based on the quantum efficiency and the response speed of the device, the structure parameters of the absorber layer are optimized to optimize the growth conditions of the material to obtain the high quality epitaxial material, and to solve the problem of the epitaxial growth of the In_(0.53)Ga_(0.47)As/In_(0.52)Al_(0.48)As superlattice material. The epitaxial growth of avalanche photodiode devices with superlattice structure. The effect of superlattice structure on the performance of avalanche photodiodes is verified by comparison of avalanche photodiodes with separated multiplication layers.
【学位授予单位】:北京工业大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TN312.7
,
本文编号:1578171
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/1578171.html