当前位置:主页 > 科技论文 > 电子信息论文 >

集成惯性聚焦结构的介电泳微流控芯片的粒子连续分离

发布时间:2018-03-18 12:14

  本文选题:介电电泳 切入点:惯性聚焦 出处:《传感技术学报》2017年05期  论文类型:期刊论文


【摘要】:设计并制造了一种带有惯性聚焦结构的介电泳微流控芯片,以实现不同介电性质的粒子连续分离。采用MEMS工艺制作了介电泳微流控芯片:通道入口侧壁设置一对梯形结构使经过的粒子受惯性升力的作用聚焦到通道两侧;通道底部光刻一组夹角为90°的倾斜叉指电极产生非均匀电场,利用介电泳力和流体曳力的合力使通道两侧不同的粒子发生角度不同的偏转进入不同通道,从而实现分离。将酵母菌细胞和聚苯乙烯小球作为实验样本,分析了流速和交流电压对分离的影响,确定了二者分离的最优条件并进行分离。实验结果表明,将电导率为20μS/cm的样本溶液以5μL/min的流速注入到通道中,施加6 V_(p-p)、10 k Hz的正弦信号,酵母菌细胞沿电极运动至夹角处后沿通道中心排出,聚苯乙烯小球沿通道两侧排出,成功实现分离,平均分离效率达92.8%、平均分离纯度达90.7%。
[Abstract]:A dielectric electrophoresis microfluidic chip with inertial focusing structure was designed and fabricated. In order to realize the continuous separation of particles with different dielectric properties, a dielectric electrophoresis microfluidic chip was fabricated by using MEMS process. A pair of trapezoidal structures were arranged on the side wall of the channel entrance to focus the passing particles on both sides of the channel under the action of inertia lift. At the bottom of the channel, a set of tilted interDigital electrodes with an angle of 90 掳produced a non-uniform electric field. By using the combined force of the dielectric electrophoresis force and the fluid drag, different particles on both sides of the channel were deflected into different channels at different angles. Using yeast cells and polystyrene pellets as experimental samples, the effects of flow rate and AC voltage on separation were analyzed, the optimum conditions of separation were determined and the experimental results showed that, The sample solution with a conductivity of 20 渭 s / cm was injected into the channel at a flow rate of 5 渭 L / min, and a sinusoidal signal of 10 kHz was applied to the cells of the yeast cell moving along the electrode to the corner, and the polystyrene pellet was discharged along the two sides of the channel, after the yeast cells moved along the electrode to the corner of the electrode, and the sample solution was injected into the channel at the flow rate of 5 渭 L / min. The average separation efficiency was 92.8% and the average purity was 90.7%.
【作者单位】: 中北大学电子测试技术重点实验室;仪器科学与动态测试教育部重点实验室;
【基金】:山西省基础研究项目(2014011021-3)
【分类号】:TN492

【相似文献】

相关期刊论文 前10条

1 杨蕊,邹明强,冀伟,牟颖,金钦汉;微流控芯片分析系统的最新研究进展[J];生命科学仪器;2004年06期

2 林金明,李海芳,苏荣国;微流控芯片的研制及其相关仪器的集成化研究[J];生命科学仪器;2005年02期

3 黄辉;郑小林;蒲晓允;;微流控芯片技术在生物学中的应用[J];重庆医学;2006年10期

4 ;体检只需“一滴血”测试芯片研制成功[J];电力电子;2006年03期

5 刘康栋;邹志清;冉瑞;庄贵生;金庆辉;赵建龙;杨梦苏;;微流控芯片表面修饰及在蛋白质富集中的应用[J];功能材料与器件学报;2007年01期

6 ;美国应用生物推出全新微流控芯片产品[J];生命科学仪器;2007年02期

7 王金光;李明;刘剑峰;周晓峰;李睿瑜;;微流控芯片在医学检测中的应用[J];现代科学仪器;2007年06期

8 罗国安;;芯片上的实验室——评《图解微流控芯片实验室》[J];科学通报;2008年21期

9 杨秀娟;李想;童艳丽;李偶连;刘翠;陈缵光;;微流控芯片在细胞分析中的应用[J];细胞生物学杂志;2008年06期

10 李偶连;刘翠;陈缵光;蓝悠;杨秀娟;;微流控芯片技术及在药物分析中的应用研究进展[J];分析科学学报;2008年04期

相关会议论文 前10条

1 刘文明;李立;任丽;王雪琴;涂琴;张艳荣;王建春;许娟;王进义;;基于微流控芯片技术的生命分析方法研究[A];中国化学会第十届全国发光分析学术研讨会论文集[C];2011年

2 涂琴;王建春;任丽;李立;刘文明;许娟;王进义;;微流控芯片细胞分析方法研究[A];中国化学会第28届学术年会第9分会场摘要集[C];2012年

3 黄和鸣;蒋稼欢;李远;贾月飞;蔡绍皙;K.-L.Paul Sung;;一种新颖的磁微流控芯片[A];2008年全国生物流变学与生物力学学术会议论文摘要集[C];2008年

4 韩建华;李少华;张建平;江龙;;一种微流控芯片的封接方法及其应用[A];中国化学会第十二届胶体与界面化学会议论文摘要集[C];2009年

5 岳婉晴;徐涛;李卓荣;杨梦苏;;基于传统丝印技术快速制备低成本微流控芯片方法的研究[A];中国化学会第27届学术年会第09分会场摘要集[C];2010年

6 周莹;申洁;郑春红;庞玉宏;黄岩谊;;高通量集成细胞培养微流控芯片[A];第一届全国生物物理化学会议暨生物物理化学发展战略研讨会论文摘要集[C];2010年

7 傅新;谢海波;杨华勇;;集成微泵式微流控芯片的设计与测试[A];全球化、信息化、绿色化提升中国制造业——2003年中国机械工程学会年会论文集(微纳制造技术应用专题)[C];2003年

8 刘爱林;陆钰;夏兴华;;微酶反应器微流控芯片的集成及酶反应动力学研究[A];第三届全国微全分析系统学术会议论文集[C];2005年

9 陈荣生;程寒;黄卫华;程介克;;玻璃微流控芯片上微通道堵塞的疏通方法[A];第三届全国微全分析系统学术会议论文集[C];2005年

10 张思祥;郑炜;关学强;冉多钢;刘伟玲;;微流控芯片计算机辅助设计、辅助制造方法研究[A];第三届全国微全分析系统学术会议论文集[C];2005年

相关博士学位论文 前10条

1 史绵红;用于疾病诊断及环境毒物检测的微阵列及微流控芯片新方法研究[D];复旦大学;2006年

2 周围;基于微流控芯片的细胞内钙离子检测及细胞驱动技术的研究[D];河北工业大学;2010年

3 魏慧斌;微流控芯片—质谱联用技术用于细胞代谢及相互作用研究[D];清华大学;2011年

4 徐涛;多功能微流控芯片在悬浮细胞通讯研究中的应用[D];清华大学;2010年

5 汪志芳;生化样品的微流控芯片在线富集及检测研究[D];华东师范大学;2012年

6 吴元庆;基于流式细胞技术的微流控芯片的研究[D];天津大学;2012年

7 柳葆;用于细胞内钙离子检测的微流控芯片关键技术与实验研究[D];河北工业大学;2012年

8 王桐;干细胞微流控芯片的设计、制备、检测与应用研究[D];北京工业大学;2013年

9 李宗安;基于数字化液滴微喷射的微流控芯片制备技术及实验研究[D];南京理工大学;2015年

10 熊鹏辉;液液萃取微流控芯片的制备工艺及应用研究[D];中国科学技术大学;2016年

相关硕士学位论文 前10条

1 申瑞霞;基于透气钢的微流控芯片气动吸脱模系统实验研究[D];中南大学;2009年

2 于虹;集成化混合和驱动单元的微流控芯片研究[D];湖南大学;2010年

3 蔡秋莲;环烯烃共聚物微流控芯片的功能化及应用[D];兰州大学;2011年

4 富景林;微流控芯片高灵敏度激光诱导荧光检测系统的研究及其在集成生化分析系统中的应用[D];浙江大学;2006年

5 李丽潇;微流控芯片细胞培养和药物诱导凋亡的研究[D];东北大学;2008年

6 何艳;微流控芯片中功能化器件的制备研究[D];吉林大学;2012年

7 李绍前;面向双颗粒捕捉的介电电泳微流控芯片研究[D];哈尔滨工业大学;2012年

8 任玉敏;微流控芯片技术在电泳及微球制备中的研究和应用[D];青岛大学;2013年

9 江金虎;基于微流控芯片的压载水中细菌快速检测[D];大连海事大学;2015年

10 姜帆;复合导电材料三维微流控芯片电极的研究[D];重庆大学;2015年



本文编号:1629528

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/1629528.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户35e4d***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com