基于石墨烯纳米涂层光子晶体光纤及其气敏性能研究
发布时间:2018-04-09 07:19
本文选题:光子晶体光纤 切入点:石墨烯涂层 出处:《重庆理工大学》2017年硕士论文
【摘要】:传感器技术是现代信息技术和发展高新技术的重要支柱,具有广泛的应用。其中,气敏传感技术可以在硫化氢、一氧化碳、二氧化碳、氨气、二氧化硫以及氮氧化合物等多种有毒有害气体检测方面发挥重要作用。随着社会的发展,制造出能准确检测到大气中有毒有害、易燃易爆气体、性能优异的气体传感器十分必要。近年来,关于光子晶体光纤传感器的研究尤为广泛,光子晶体光纤也称为微结构光纤和多孔光纤,由于它独特的结构特点和新颖的光学特性,使得它在光通信、光器件和光传感等各大领域中获得了极为广泛的应用,特别是在光纤传感领域应用最为突出。石墨烯(Graphene)是一种类似蜂巢状的结构,而这种结构是由六个碳原子组成的六元环,它一层的厚度约为0.334nm。本文在实验中将光子晶体光纤与新兴石墨烯材料结合,制备了基于石墨烯涂层光子晶体光纤气体传感器。本文主要研究工作如下:(1)使用古河S178A光纤熔接机,研究了光子晶体光纤与普通单模光纤的熔接参数和熔接损耗,并实现了单模光纤与光子晶体光纤的熔接,熔接损耗低至0.03dB,成功制备了锥形光纤的微结构。(2)基于还原氧化石墨烯与所制备的光纤,制成石墨烯涂层的光子晶体光纤作为传感器敏感元件,涂层厚度为80nm,主要包括高温煅烧还原氧化石墨烯,光纤的固定,石墨烯涂层的成膜方法。(3)自行简易设计了基于石墨烯涂层光子晶体光纤气敏元件的测试气室,并结合光学平台、计算机、ASE宽带光源和AQ6370D光谱分析仪等设备成功搭建了气敏测试平台。(4)制备了不同浓度的硫化氢气体,将所制备的不同浓度硫化氢气体通入设计的气室中,进行敏感性能的测试,根据测试数据分析了石墨烯纳米涂层光子晶体光纤的气体敏感性能,测试结果显示其灵敏度为31.43pm/ppm。(5)采用石墨烯和Cu纳米粒子混合煅烧的方法,成功在石墨烯涂层光子晶体光纤基础之上沉积Cu纳米颗粒,与未沉积的石墨烯涂层进行对比,观察其光谱特性和气敏性能,灵敏度为42.03pm/ppm。(6)结合光纤传感原理与气敏薄膜结构,通过对已测试数据分析和结合相关理论知识,分析光谱变化过程和传感机理。
[Abstract]:Sensor technology is an important pillar of modern information technology and the development of high-tech, with a wide range of applications.Among them, gas sensing technology can play an important role in the detection of hydrogen sulfide, carbon monoxide, carbon dioxide, ammonia, sulfur dioxide and nitrogen oxides and other toxic and harmful gases.With the development of society, it is necessary to produce gas sensors that can accurately detect toxic, harmful, flammable and explosive gases in the atmosphere.In recent years, the research of photonic crystal fiber sensor is especially extensive. Photonic crystal fiber is also called micro-structure fiber and porous fiber. Because of its unique structure and novel optical properties, it is used in optical communication.Optical devices and optical sensors have been widely used in various fields, especially in the field of optical fiber sensing.Graphene (Graphene) is a honeycomb-like structure consisting of six carbon atoms in a six-member ring with a thickness of about 0.334nm.In this paper, photonic crystal fiber gas sensor based on graphene coating has been fabricated by combining photonic crystal fiber with new graphene material.The main work of this paper is as follows: (1) using the Gouhe S178A optical fiber welding machine, the welding parameters and welding loss between photonic crystal fiber and ordinary single-mode fiber are studied, and the fusion between single-mode fiber and photonic crystal fiber is realized.The microstructure of tapered fiber was fabricated successfully. Based on the reduced graphene oxide and the prepared fiber, the photonic crystal fiber coated with graphene was made as the sensor sensitive element.The thickness of the coating is 80 nm, which mainly includes high temperature calcination, reduction of graphene oxide, fixation of optical fiber, film forming method of graphene coating. The test gas chamber based on graphene coated photonic crystal fiber gas sensor is designed by ourselves and combined with optical platform.The wide band light source of ASE and AQ6370D spectrum analyzer were used to build a gas sensing test platform. (4) different concentrations of hydrogen sulfide gas were prepared, and the different concentrations of hydrogen sulfide gas were put into the designed gas chamber to test the sensitivity of the gas.The gas sensitivity of graphene nanocrystalline coated photonic crystal fiber is analyzed according to the test data. The test results show that the sensitivity is 31.43pm / ppm.f.) the method of mixed calcination of graphene and Cu nanoparticles is used.The Cu nanoparticles were successfully deposited on the graphene coated photonic crystal fiber and compared with the undeposited graphene coating. The spectral characteristics and gas sensing properties were observed. The sensitivity was 42.03pm / ppm.f6) combined with the sensing principle of optical fiber and the structure of gas sensing film.The spectral variation process and sensing mechanism are analyzed by analyzing the tested data and combining relevant theoretical knowledge.
【学位授予单位】:重庆理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN253;TP212
【参考文献】
相关期刊论文 前10条
1 王文杰,郭林,张宁,纪越峰;光子晶体光纤的研究进展及应用[J];光通信技术;2004年07期
2 宁鼎;光子晶体光纤[J];光纤与电缆及其应用技术;2004年01期
3 关铁梁;光子晶体光纤[J];激光与光电子学进展;2002年10期
4 盛广沪;李鸿;高跃飞;;光子晶体光纤的研究进展[J];江西科学;2006年06期
5 何理;杨伯君;张晓光;于丽;;光子晶体光纤特性及光通信中的应用[J];量子光学学报;2006年04期
6 刘红梅;林巧文;刘桂枝;;光子晶体光纤特性及其在光器件的应用[J];山西大同大学学报(自然科学版);2009年05期
7 王浩宇;曹建;安晨光;;基于MEMS技术的气体热导传感器的应用研究[J];传感技术学报;2009年07期
8 王伟;侯蓝田;;光子晶体光纤的现状和发展[J];激光与光电子学进展;2008年02期
9 王松红;;光子晶体光纤的研究现状及其在光纤通信中的应用[J];科技信息;2009年16期
10 杜彬贤;陈今润;尹军;;热导式气体传感器工作原理及检测方法改进[J];化学工程与装备;2010年02期
相关硕士学位论文 前1条
1 杨迁;基于超声谐振腔的氢气检测系统研究与设计[D];电子科技大学;2010年
,本文编号:1725407
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/1725407.html