Ka频段固态功率放大器研究
发布时间:2018-04-24 04:07
本文选题:回旋器件 + 固态功率放大器 ; 参考:《电子科技大学》2017年硕士论文
【摘要】:随着现代电子技术的发展,通讯、电子对抗和毫米波雷达对系统高功率、小型化的需求越来越高。而毫米波固态功率放大器由于其直流电压低、体积小、重量轻、制作方便、性能稳定、合成效率高的优点成为最有发展潜力和应用前景的毫米波发射机功率源。同时,将固态功率放大器作为回旋器件的前级稳定功率源,能够综合固态器件和回旋器件的优点,更好地满足大功率毫米波发射机功率源的要求。本文分析介绍了毫米波固态功率放大器的分类、性能指标、功率合成技术以及功率合成失效的主要原因。并从功率合成理论,芯片选型,波导微带过渡结构设计,功率分配/合成器设计、功率放大器有源设计、功率放大器的调试与测试等方面进行研究。在理论和实践结合的基础上,设计Ka频段高隔离度紧凑型宽带固态功率放大器,为后续的大功率高性能固态功率放大器的研发积累设计经验。本文主要研究内容有:首先,设计完成具有宽带宽、低插损特性的波导微带过渡结构以及具有宽带宽、高隔离度、幅相一致性好的两路功分器,并基于E面魔T功分器单元设计结构紧凑的八路/十六路功率合成网络,为之后的27~33.5GHz频段7W功率放大器以及32~38GHz频段20W功率放大器的设计提供无源设计方案。然后,基于波导微带探针过渡结构完成27~33.5GHz频段驱动级功放设计。同时基于波导微带双探针过渡和E面魔T功分器结构完成27~33.5GHz频段7W固态功率放大器设计。经过测试,该功放在27~38GHz频段内S11均小于-10dB,在32~36.5GHz频段小于-20dB。整体无源结构S21为1.2dB。另外,在27~33.5GHz频段内,最小的饱和输出功率为33dBm,最大为39dBm。在27~30.5GHz和31.5~32.5GHz频段内,输出功率均大于37dBm,达到较好效果。最后,基于E面T型功分器、T型结功分器、H面波导弯头和波导微带H面探针过渡结构完成32~38GHz频段20W固态功率放大器设计。相比较传统的功分结构和芯片位于同一层的功放设计,该功放所有的芯片都安装在下腔体上,而功率分配/合成网络结构单独加工,避免了对芯片安装的影响,解决了紧凑型多路合成时芯片偏置电路难以安装的难题。经过测试,该功放在30~40GHz频段内输入S11均小于-10dB。另外,在31.3~40GHz频段内的饱和输出功率均大于43dBm,在30~31.3GHz频段内的饱和输出功率介于41~43dBm,在36.4GHz频率点达到最大饱和输出功率44.29dBm,达到很好效果。
[Abstract]:With the development of modern electronic technology, the demand of communication, electronic countermeasure and millimeter wave radar for high power and miniaturization is increasing. Because of its advantages of low DC voltage, small volume, light weight, convenient fabrication, stable performance and high synthesis efficiency, millimeter-wave solid-state power amplifier has become the most promising power source for millimeter-wave transmitters. At the same time, using the solid-state power amplifier as the leading stable power source of the gyrotron can integrate the advantages of the solid-state device and the gyrotron device, and better meet the requirements of the high-power millimeter-wave transmitter power source. In this paper, the classification, performance index, power combination technology and main reasons of failure of millimeter wave solid-state power amplifier are analyzed and introduced. The power synthesis theory, chip selection, waveguide microstrip transition structure design, power distribution / synthesizer design, active power amplifier design, debugging and testing of power amplifier are studied. Based on the combination of theory and practice, the design of Ka-band high-isolation compact wideband solid-state power amplifier is carried out, which accumulates the design experience for the research and development of high-power and high-performance solid-state power amplifier. The main contents of this thesis are as follows: firstly, a waveguide microstrip transition structure with wide bandwidth and low insertion loss and a two-way power divider with wide bandwidth, high isolation and good amplitude and phase consistency are designed. Based on the E plane magic T power divider unit, a compact 8-way / 16-way power synthesizer is designed, which provides a passive design scheme for the 7W power amplifier in the 27~33.5GHz band and the 20W power amplifier in the 32~38GHz band. Then, based on the waveguide microstrip probe transition structure, the 27~33.5GHz band driving stage power amplifier design is completed. At the same time, based on the waveguide microstrip double probe transition and the E plane magic T power divider structure, the design of 7 W solid state power amplifier in 27~33.5GHz band is completed. The test results show that the power amplifier is less than -10 dB in 27~38GHz band and -20 dB in 32~36.5GHz band. The whole passive structure S21 is 1.2 dB. In addition, in the 27~33.5GHz band, the minimum saturation output power is 33dBmand the maximum output power is 39dBm. In the 27~30.5GHz and 31.5~32.5GHz bands, the output power is more than 37 dBm, which achieves good results. Finally, the design of 20W solid-state power amplifier in 32~38GHz band is completed based on the transition structure of H-plane waveguide elbow and waveguide microstrip H-plane probe based on E-plane T-type power divider and T-junction power divider. Compared with the traditional power amplifier design which is located in the same layer of the chip, all the chips are installed on the lower cavity, and the power distribution / synthesis network structure is processed separately to avoid the influence on the chip installation. It solves the problem that the chip bias circuit is difficult to install when compact multiplexing. After testing, the input of S11 in 30~40GHz band is less than -10 dB. In addition, the saturation output power in the 31.3~40GHz band is greater than 43dBm, the saturation output power in the 30~31.3GHz band is between 41dBm and 43dBm, and the maximum saturation output power is 44.29dBmat the 36.4GHz frequency.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN722.75
【参考文献】
相关期刊论文 前2条
1 朱海帆;党章;李凯;刘祚麟;;Ka频段200W线性固态功放设计[J];微波学报;2012年03期
2 褚庆昕;康智勇;龚志;;Ka波段波导二进制空间功率合成放大器[J];微波学报;2012年01期
,本文编号:1795052
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/1795052.html